• 제목/요약/키워드: FOOT FORCE

검색결과 339건 처리시간 0.021초

우리나라 연령별 보행분석 비교연구 (The Comparative Study on Age-associated Gait Analysis in Normal Korean)

  • 윤나미;윤희종;박장성;정화수;김건
    • The Journal of Korean Physical Therapy
    • /
    • 제22권2호
    • /
    • pp.15-23
    • /
    • 2010
  • Purpose: This study was done to establish reference data for temporo-spatial, kinematic and kinetic parameters for normal Koreans as they age. Methods: Normal adults and children without a previous history of musculoskeletal problems were enrolled in this study. The normal subjects were divided by age into three groups: Group I: children ($11.95{\pm}0.29$ years); Group II: young adults ($23.90{\pm}3.67$ years); Group III: older adults ($71.40{\pm}4.08$ years). The temporo-spatial and kinematic data were measured using 6 MX3 cameras while each subject walked through a 10 m walkway at a self-selected speed. The kinetic data were measured using 2 force plates and were calculated by inverse dynamics. Results: Motion patterns are typically associated with a specific phase of the gait cycle. Our results were as follows: 1. There were significant differences between the different age groups in temporo-spatial parameters such as cadence, double support, time of foot off, stride length, step length, and walking speed. 2. There were significant differences between the groups in kinematic parameters such as range of motion (ROM) of the hip, knee and ankle in the sagittal plane, ROM of the pelvis, hip and knee in the coronal plane and ROM of the pelvis, hip and ankle in the transverse plane. 3. There were significant differences between the groups in kinetic parameters such as joint moments of force, joint mechanical power generation or absorption and ground reaction forces. Conclusion: The results of this study can be utilized (a) as a reference for kinematic and kinetic data of gait analysis in normal Koreans, and (b) as an aide in evaluating and treating patients who have problems relating to gait.

12주간의 수중 운동을 수행 한 여성노인의 장애물 보행 특성 (The Characteristics of Obstacle Gaits in Female Elders after 12 Weeks of an Aquatic Exercise Program)

  • 김석범;유연주
    • 한국운동역학회지
    • /
    • 제19권3호
    • /
    • pp.539-547
    • /
    • 2009
  • 본 연구의 목적은 낙상 예방을 위한 12주간의 수중 운동 수행 후 장애물 보행의 특성을 운동학 및 운동역학적으로 분석하는 것이다. 여성 노인 8명이 참여하였으며, 대상자들은 수중 운동 전 후에 네 높이의 장애물(0, 2.5, 5.1, & 15.2cm)을 자기선호 속도로 넘었다. 수중 운동 수행 후 고관절의 최대각, 최소각, ROM(Range Of Motion)이 유의하게 증가하였으며, Swing 과 Stance 국면에서 소요시간은 줄어들었다. 수중 운동 후 모든 높이에서 보폭은 유의하게 증가하였고, 보간은 줄어들었다. 수중 운동 후 장애물을 넘는 순간 장애물과 오른발 사이의 수직 최단거리는 증가하였고(15.2cm 장애물 제외), 장애물을 넘는 속도는 증가하였다. 수중 운동 수행 후 제동력, 추진력, 제동 운동량, 추진 운동량은 통계적으로 유의하게 변화하였다. 12주간의 수중 운동은 여성 노인의 근력과 평형성을 향상시켰으며 이는 낙상과 관련된 장애물 보행의 운동학 및 운동역학적 변인의 변화를 가져와 여성 노인들이 장애물을 안전하고 신속하게 넘을 수 있었다. 따라서 노인에게 보행 능력 향상과 낙상 예방 운동으로 수중 운동이 추천된다.

Effect of Functional Ankle Instability and Surgical Treatment on Dynamic Postural Stability and Leg Stiffness Variables during Vertical-Drop Landing

  • Jeon, Kyoung Kyu;Kim, Kew Wan;Ryew, Che Cheong;Hyun, Seung Hyun
    • 한국운동역학회지
    • /
    • 제28권2호
    • /
    • pp.135-141
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effect of functional ankle instability (FAI) and surgical treatment (ST) on postural stability and leg stiffness during vertical-drop landing. Method: A total of 21 men participated in this study (normal [NOR]: 7, FAI: 7, ST: 7). We estimated dimensionless leg stiffness as the ratio of the peak vertical ground reaction force and the change in stance-phase leg length. Leg length was calculated as the distance from the center of the pelvis to the center of pressure under the foot. Furthermore, the analyzed variables included the loading rate and the dynamic postural stability index (DPSI; medial-lateral [ML], anterior-posterior [AP], and vertical [V]) in the initial contact phase. Results: The dimensionless leg stiffness in the FAI group was higher than that of the NOR group and the ST group (p = .018). This result may be due to a smaller change in stance-phase leg length (p = .001). DPSI (ML, AP, and V) and loading rate did not show differences according to the types of ankle instability during drop landing (p > .05). Conclusion: This study suggested that the dimensionless leg stiffness was within the normal range in the ST group, whereas it was increased by the stiffness of the legs rather than the peak vertical force during vertical-drop landing in the FAI group. Identifying these potential differences may enable clinicians to assess ankle instability and design rehabilitation protocols specific for the impairment.

An Attention-based Temporal Network for Parkinson's Disease Severity Rating using Gait Signals

  • Huimin Wu;Yongcan Liu;Haozhe Yang;Zhongxiang Xie;Xianchao Chen;Mingzhi Wen;Aite Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권10호
    • /
    • pp.2627-2642
    • /
    • 2023
  • Parkinson's disease (PD) is a typical, chronic neurodegenerative disease involving the concentration of dopamine, which can disrupt motor activity and cause different degrees of gait disturbance relevant to PD severity in patients. As current clinical PD diagnosis is a complex, time-consuming, and challenging task that relays on physicians' subjective evaluation of visual observations, gait disturbance has been extensively explored to make automatic detection of PD diagnosis and severity rating and provides auxiliary information for physicians' decisions using gait data from various acquisition devices. Among them, wearable sensors have the advantage of flexibility since they do not limit the wearers' activity sphere in this application scenario. In this paper, an attention-based temporal network (ATN) is designed for the time series structure of gait data (vertical ground reaction force signals) from foot sensor systems, to learn the discriminative differences related to PD severity levels hidden in sequential data. The structure of the proposed method is illuminated by Transformer Network for its success in excavating temporal information, containing three modules: a preprocessing module to map intra-moment features, a feature extractor computing complicated gait characteristic of the whole signal sequence in the temporal dimension, and a classifier for the final decision-making about PD severity assessment. The experiment is conducted on the public dataset PDgait of VGRF signals to verify the proposed model's validity and show promising classification performance compared with several existing methods.

가상현실과 힘판을 통한 시각적 되먹임 트레드밀 보행훈련이 뇌졸중 환자의 보행능력과 삶의 질에 미치는 영향 (Effects of Visual Feedback Treadmill Gait Training Program Combined with Virtual Reality Technology and a Force Plate Measurement System on Gait Ability and Quality of Life in Stroke Patients)

  • 이동률
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제14권3호
    • /
    • pp.363-373
    • /
    • 2020
  • 본 연구는 뇌졸중 환자에게 엔터테인먼트요소가 가미된 가상현실과 시각적 되먹임 보행 훈련 프로그램을 병행하여 보행능력과 삶의 질을 향상시키고자 하였다. 이에 휘돌림 보행을 하는 뇌졸중 환자 10명을 선정하여, 가상현실과 힘판을 통한 시각적 되먹임 트레드밀보행훈련을 일일 30분씩, 주5회, 5주간 총 25회 실시하였다. 이러한 보행훈련의 효과를 알아보기 위해 관절가동범위검사, 근활성도 검사, 버그 균형 척도(BBS), 보행분석, 삶의 질(SS-QOL) 평가를 중재 전·후 시행하였다. 본 연구결과, 보행 흔듦기 시기에 마비측 관절가동범위와 근활성도, 동적균형능력, 보행능력, 삶의 질이 중재 후 통계학적으로 유의하게 차이가 있었다(p<0.05). 본 연구결과를 통해 본 연구의 보행훈련이 휘돌림 보행을 하는 뇌졸중 환자의 발처짐, 근활성도, 동적 균형 및 보행능력을 향상시키고, 이로 인한 삶의 질도 개선하는 것을 알 수 있었다. 따라서 휘돌림 보행을 하는 뇌졸중 환자의 보행능력 향상과 삶의 질 개선을 통한 라이프케어증진을 위해 가상현실과 힘판을 통한 시각적 되먹임 트레드밀보행훈련 프로그램 적용을 권장한다.

The Influence of High-heeled Shoes on Kinematics and Kinetics of the Knee Joint during Sit-to-stand task

  • Park, Ji-Won;Kim, Yun-Jin
    • The Journal of Korean Physical Therapy
    • /
    • 제27권5호
    • /
    • pp.304-310
    • /
    • 2015
  • Purpose: The purpose of this study was to examine the change in the kinematics and kinetics of the knee joint depending on high-heeled shoes during sit-to-stand (SitTS) task. Methods: Nineteen healthy females participated in this study. The subjects performed the SitTS task wearing high-heeled shoes and barefoot. The experiment was repeated three times for each task with foot conditions. The kinematics and kinetics of the knee joint were measured and analyzed using a 3D motion analysis system. Results: The result of this study showed kinematic and kinetics differences in knee joints during the SitTS task based on high-heeled shoes. Significant differences in knee flexion angle were observed during SitTS. The knee extensor force showed statistically significant differences during SitTS tasks. At the initial of SitTS, the knee flexor and extensor moment showed significant differences. The knee extensor moment showed statistically significant differences at the terminal of SitTS. At the maximum of SitTS, the knee extensor moment showed statistically significant differences. Conclusion: Therefore, wearing high-heeled shoes during SitTS movements in daily life is considered to influence knee joint kinematics and kinetics due to the HH, suggesting the possibility of increased risk of patellofemoral pain, and knee osteoarthritis caused by changes in loading of the knee joint.

하지 외골격 로봇을 위한 인솔 센서시스템 및 보행 판단 알고리즘 개발 (Development of Insole Sensor System and Gait Phase Detection Algorithm for Lower Extremity Exoskeleton)

  • 임동환;김완수;미안 아쉬팍 알리;한창수
    • 한국정밀공학회지
    • /
    • 제32권12호
    • /
    • pp.1065-1072
    • /
    • 2015
  • This paper is about the development of an insole sensor system that can determine the model of an exoskeleton robot for lower limb that is a multi-degree of freedom system. First, the study analyzed the kinematic model of an exoskeleton robot for the lower limb that changes according to the gait phase detection of a human. Based on the ground reaction force (GRF), which is generated when walking, to proceed with insole sensor development, the sensing type, location, and the number of sensors were selected. The center of pressure (COP) of the human foot was understood first, prior to the development of algorithm. Using the COP, an algorithm was developed that is capable of detecting the gait phase with small number of sensors. An experiment at 3 km/h speed was conducted on the developed sensor system to evaluate the developed insole sensor system and the gait phase detection algorithm.

12주간 적용 가능한 코어, 신경근 훈련의 동적 안정성 효과 (Dynamic Stability Effect of Applicable Core and Neuromuscular Training for 12 Weeks)

  • 김경훈;이성철
    • 한국운동역학회지
    • /
    • 제20권1호
    • /
    • pp.101-108
    • /
    • 2010
  • Recently, core and neuromuscular training(CNT) is emerging as a clinically relevant tool to improve neuromuscular control and to prevent sports injuries. The purpose of this study was to examine the effect of a 12 weeks CNT program on the dynamic stability after drop landing. The subjects attempted drop landing onto the force platform on single foot from a 40 cm height distance. The collected data was used to calculate the dynamic stability index. The Dynamic stability index was derived by measuring the medial-lateral stability index(MLSI), anterior-posterior stability index(APSI), and the vertical stability index(VSI). In comparison to the control group, the MLSI and APSI showed no difference, yet, it resulted in higher VSI. The results of this study suggest that CNT is worthwhile to be considered as a way to improve neuromuscular control and to prevent traumatic injuries. However, the results are taking into consideration to discuss the limitations of CNT and suggested future approaches.

New Fluid Flow System for Simulation of Mechanical Loading to Bone Cells During Human Gait Cycle

  • Ahn, Jae-Mok
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.377-386
    • /
    • 2007
  • Mechanical loading to bone cells using simple sine wave or constant wave fluid flow has been widely used for in vitro experiments. Human gait is characterized by a complex loading to bones of lower extremities which results from a series of events consisting of heel strike, foot flat and push-off during the stance phase of the gait cycle. Telemetric force analyses have shown that human femora are subject to multiphasic loading. Therefore, it would be ideal if the physiologic loading conditions during human walking can be used for in vitro mechanotransduction studies. Here, for a mechanotransduction study, we develop it fluid flow system (FFS) in order to simulate human physiologic mechanicalloading on bone cells. The development methods of the FFS including the COR (Center for Orthopedic Research), monitor program are presented. The FFS could generate various multiphasic loading conditions of human gaits with output flow. Wall shear distribution was very uniform, with 81 % of the effective loading area of the culture on a glass slide. Our results demonstrated that the FFS, provide a new translational approach for unveiling molecular mechanotransduction pathways in bone cells.

3D프린팅을 이용한 편성물의 역학적 특성 연구 -PLA, TPU 필라멘트를 중심으로- (A Study on the Mechanical Properties of Knit Fabric Using 3D Printing -Focused on PLA, TPU Filament-)

  • 한유정;김종준
    • 패션비즈니스
    • /
    • 제22권4호
    • /
    • pp.93-105
    • /
    • 2018
  • Using FDM 3D printing, yarn shape and composition were modeled and 3D printed with PLA and TPU filaments currently used for apparel. Based on this, mechanical characteristics were measured to determine 3D printing yarn according to type of filaments in the 3D printed output and deformation and recovery characteristics due to differences in structure type. As a result of examining tensile and shear characteristics of PLA and TPU 3D printing compiles, TPU overall was measured with significantly lower stress than PLA. This is due to high elasticity of TPU's character, revealing that it has better flexibility than PLA. In addition, during deformation due to external forces, the more freedom between the head and foot parts of the loop, and the lower the force associated with each other, the more flexible it is. TPU revealed that it was easier to tension and recovery from tensile deformation than PLA, indicating potential for clothing materials using 3D printing. If high-molecular materials, such as PLA flexibility, it is likely to provide some flexibility through development of styles, including degree of freedom in modeling. Based on this, we provide basic data for developing 3D printing textures that can be satisfied with textile for apparel.