• Title/Summary/Keyword: FMO interaction

Search Result 13, Processing Time 0.017 seconds

2D-QSAR and HQSAR Analysis on the Herbicidal Activity and Reactivity of New O,O-dialkyl-1-phenoxy-acetoxy-1-methylphosphonate Analogues (새로운 O,O-dialkyl-1-phenoxyacetoxy-1-methylphosphonate 유도체들의 반응성과 제초활성에 관한 2D-QSAR 및 HQSAR 분석)

  • Sung, Nack-Do;Jang, Seok-Chan;Hwang, Tae-Yeon
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.72-81
    • /
    • 2007
  • Quantitative structure-activity relationships (QSARs) on the pre-emergency herbicidal activity and reactivity of a series of new O,O-dialkyl-1-phenoxyacetoxy-1-methylphosphonates (S) analogues against seed of cucumber (Cucumus Sativa) were discussed quantitatively using 2D-QSAR and HQSAR methods. The statistical values of HQSAR model were better than that of 2D-QSAR model. From the frontier molecular orbital (FMO) interaction between substrate molecule (S) and $BH^+$ ion (I) in PDH enzyme, the electrophilic reaction was superior in reactivity. From the effect of substituents, $R_2$-groups in substrate molecule (S) contributed to electrophilic reaction with carbonyl oxygen atom while X, Y-groups contributed to nucleophilic reaction with carbonyl carbon atom. And the influence of X,Y-groups was more effective than that of $R_2$-groups. As a results of 2D-QSAR model (I & II) and atomic contribution maps with HQSAR model, the more length of X, Y-groups is longer, the more herbicidal activity tends to increased. And also, the optimal ${\epsilon}LUMO$ energy, $({\epsilon}LUMO)_{opt.}$=-0.479 (e.v.) of substrate molecule is important factor in determining the herbicidal activity. It is predicted that the herbicidal activity proceeds through a nucleophilic reaction. From the analytical results of 2D-QSAR and HQSAR model, it is suggested that the structural distinctions and descriptors that contribute to herbicidal activities will be able to applied new herbicide design.

Theoretical Study of Thiazole Adsorption on the (6,0) zigzag Single-Walled Boron Nitride Nanotube

  • Moradi, Ali Varasteh;Peyghan, Ali Ahmadi;Hashemian, Saeede;Baei, Mohammad T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3285-3292
    • /
    • 2012
  • The interaction of thiazole drug with (6,0) zigzag single-walled boron nitride nanotube of finite length in gas and solvent phases was studied by means of density functional theory (DFT) calculations. In both phases, the binding energy is negative and presenting characterizes an exothermic process. Also, the binding energy in solvent phase is more than that the gas phase. Binding energy corresponding to adsorption of thiazole on the BNNT model in the gas and solvent phases was calculated to be -0.34 and -0.56 eV, and about 0.04 and 0.06 electrons is transferred from the thiazole to the nanotube in the phases. The significantly changes in binding energies and energy gap values by the thiazole adsorption, shows the high sensitivity of the electronic properties of BNNT towards the adsorption of the thiazole molecule. Frontier molecular orbital theory (FMO) and structural analyses show that the low energy level of LUMO, electron density, and length of the surrounding bonds of adsorbing atoms help to the thiazole adsorption on the nanotube. Decrease in global hardness, energy gap and ionization potential is due to the adsorption of the thiazole, and consequently, in the both phases, stability of the thiazole-attached (6,0) BNNT model is decreased and its reactivity increased. Presence of polar solvent increases the electron donor of the thiazole and the electrophilicity of the complex. This study may provide new insight to the development of functionalized boron nitride nanotubes as drug delivery systems for virtual applications.

Determination of Reactivity by MO Theory (XXIII). Substituent Effect on Regioselectivity of Diels-Alder Reactions (分子軌道論에 의한 反應性 決定 (제23보). Diels-Alder 反應의 配向性에 미치는 置換基 效果)

  • Ikchoon Lee;Eun Sook Han;Keun Bae Rhyu
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.7-17
    • /
    • 1982
  • In order to predict substituent and Lewis acid effects on the regiospecificity of the Diels-Alder reaction, and to investigate the competition for the complexation of Lewis acid between diene and dienophile, frontier orbital theory has been applied to thermal and catalyzed Diels-Alder reaction by means of CNDO/2 MO method. It has been found that: (1) Lewis acid coordinated preferentially with diene rather than dienophile when carbonyl oxygen of acetoxy substituted diene had larger negative atomic charges than that of dienophile. (2) Most of the reaction were neutral electron demand type, and hence 4-C, 2-C and quantitative secondary orbital interacion methods were generally in good accord with experiments. (3) Sulfur activated the adjacent terminal carbon atom greatly to increase diene LUMO-dienophile HOMO interaction through vacant-d-orbital participation, and played an important role in controlling regioselectivity of neutral electron demand reaction type.

  • PDF