• Title/Summary/Keyword: FLOWERING RATE

Search Result 334, Processing Time 0.025 seconds

Changes of Flowering Time in the Weather Flora in Susan Using the Time Series Analysis (시계열 분석을 이용한 부산지역 계절식물의 개화시기 변화)

  • Choi, Chul-Mann;Moon, Sung-Gi
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.369-374
    • /
    • 2009
  • To examine the trend on the flowering time in some weather flora including Prunus serrulata var. spontanea, Cosmos bipinnatus, and Robinia pseudo-acacia in Busan, the changes in time series and rate of flowering time of plants were analyzed using the method of time series analysis. According to the correlation between the flowering time and the temperature, changing pattern of flowering time was very similar to the pattern of the temperature, and change rate was gradually risen up as time goes on. Especially, the change rate of flowering time in C. bipinnatus was 0.487 day/year and showed the highest value. In flowering date in 2007, the difference was one day between measurement value and prediction value in C. bipinnatus and R. pseudo-acacia, whereas the difference was 8 days in P. mume showing great difference compared to other plants. Flowering time was highly related with temperature of February and March in the weather flora except for P. mume, R. pseudo-acacia and C. bipinnatus. In most plants, flowering time was highly related with a daily average temperature. However, the correlation between flowering time and a daily minimum temperature was the highest in Rhododendron mucronulatum and P. persica, otherwise the correlation between flowering time and a daily maximum temperature was the highest in Pyrus sp.

The Trend on the Change of the Cherry Blossom Flowering Time due to the Temperature Change (기온 변화에 따른 벚꽃 개화시기의 변화 경향)

  • Lee, Seungho;Lee, Kyoungmi
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.1
    • /
    • pp.45-54
    • /
    • 2003
  • The purpose of this paper is to examine the trend on the change of the cherry blossom flowering time due to the temperature change by selecting regions that have long periods of cherry blossom flowering time data as cases. With the flowering time data, the distribution of cherry blossom flowering time, time series change and change rate of cherry blossom flowering time were analyzed. Also, the correlation between the cherry blossom flowering time and the temperature was analyzed. The flowering of cherry blossom is earlier in metropolitan areas, and in the east coastal region than the west coastal region. The trend on the change of the cherry blossom flowering time is very similar to change the temperature. The change rate of the cherry blossom flowering time is rising up in the whole regions under study, and is relatively high in metropolitan areas. Especially, the cherry blossom flowering time festinated greatly in Pohang that is one of the heavily industrialized cities. From the analysis of correlation analysis between cherry blossom flowering time and temperature elements, the cherry blossom flowering time is highly related with mean temperature of March, which the month is just before the beginning of flowering.

Characteristics of Flower of Plus Tree Clones of Pinus koraiensis S. et Z. (잣나무 수형목(秀型木) clone의 개화특성(開花特性))

  • Han, Sang Sup;Lee, Sang Boong
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.290-301
    • /
    • 1990
  • The 167 plus tree clones of Pinus koraiensis in clone bank planted in 1983 were investigated for time of flowering, rate of flowering, and number of flowering from 1986 to 1989. The results were as follows : 1) There were clones in the minority which do not cross in natural pollination between earlest flowering female clones and latest shedding male clones. 2) The rate of male flowering appeared less than rate of female flowering and received influence of genetic more than rate of female flowering. 3) The numbers of flowering in female and male flower were affected by small number of clones. 4) The flowering number for female strobili was not related to the flowering number of male flower. The 42 clones among 167 clone had not male flower. 5) The flowering number of 167clones were classified three groups in female flower and four groups in male flower by L.S.D 5% test. 6) The clones with abundant female and male flower were selected based on the component analysis. 7) As Based on flowering rate and number of female, the juvenile phase of plus tree clones appeared to be until four years after grafting ; the transition period appeared to be from five to seven years after grafting ; the adult phase appeared to begin from eight years after grafting, 8) The grafted trees of Pinus koraiensis appeared early flowerring about six years compared with seedling trees.

  • PDF

Relationship between the sexual and the vegetative organs in a Polygonatum humile (Liliaceae) population in a temperate forest gap

  • Min, Byeong-Mee
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.256-264
    • /
    • 2017
  • Background: The aim of this study was to clarify the relationship between the sexual reproduction and the resource allocation in a natural Polygonatum humile population grown in a temperate mixed forest gap. For this aim, the plant size, the node which flower was formed, the fruiting rate, and the dry weight of each organ were monitored from June 2014 to August 2015. Results: Firstly, in 3-13-leaf plants, plants with leaves ${\leq}8$ did not have flowers and in plants with over 9 leaves the flowering rate increased with the number of leaves. Among plants with the same number of leaves, the total leaf area and dry weight of flowering plants were larger than those of non-flowering plants. The minimum leaf area and dry weight of flowering plants were $100cm^2$ and 200 mg, respectively. Secondary, the flowers were formed at the 3rd~8th nodes, and the flowering rate was highest at the 5th node. Thirdly, cumulative values of leaf properties from the last leaf (the top leaf on a stem) to the same leaf rank were greater in a plant with a reproductive organ than in a plant without a reproductive organ. Fourthly, fruit set was 6.1% and faithful fruit was 2.6% of total flowers. Biomasses of new rhizomes produced per milligram dry weight of leaf were $0.397{\pm}190mg$ in plants that set fruit and $0.520{\pm}0.263mg$ in plants that did not, and the difference between the 2 plant groups was significant at the 0.1% level. Conclusions: P. humile showed that the 1st flower formed on the 3rd node from the shoot's base. And P. humile showed the minimum plant size needed in fruiting, and fruiting restricted the growth of new rhizomes. However, the fruiting rate was very low. Thus, it was thought that the low fruiting rate caused more energy to invest in the rhizomes, leading to a longer rhizome. A longer rhizome was thought to be more advantageous than a short one to avoid the shading.

Flowering and Fruiting of Characteristics of Short Flowering Period Lines in Peanut (땅콩 단기개화성 선발 계통의 개화 및 결실 특성)

  • ;Jeom-Ho Ryu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.437-442
    • /
    • 2002
  • To breed high quality and yield peanut variety according to select the short flowering duration, fifteen germplasms (1 virginia,7 spanish,6 valencia types and var, Daekwang) were investigated the flowering habit and agronomic characteristics from 1998 to 1999. Emergence date of the selected short flowering duration germplasms (SPFGs) was earlier 1-3 days and middle or small seed than that of var, Daekwang. Main stem length was longer 57cm but the number of branches, pods, 100-seed weight, and pod weight per plant was reduced 25%, 23%, 42%, 46%, respectively, in SPFCs comparing to var, Daekwang. The flowering date in SPFGs was similar but the flowering duration was earlier 5-16 days than that of var, Daekwang (52 days). Varieties that flowered shorter duration than 50 days were 18.8% among the SPFGs. The number of total flowers in SPFGs was fewer 50% than that of var, Daekwang. The rate of flowering inhibition were 50-52% than that of var Daekwang. The frequencies of flowering duration (under 50 days) were 7.7% in virginia, 46.2% in spanish, 53.9% in valencia. The effect of shading treatment on rate of flowering inhibition were 11%, but number of branches and pods were reduced by 27-31% in valencia type compared to non-shade. Correlation coefficient was significant positively ($r=0.9314^*$ virginia, $r=0.9551^*$ spanish, $r=0.9551^*$ valencia) between the air temperature and flower number, The frequency of peg and pod number on 1st to 2nd nodes in SPFGs were more 3-12%, 21-26% than that of var. Daekwang. The rate of mature pods at 80 days after flowering were higher 12-17% than that of var, Daekwang (68%). Correlation coefficient was high significant negatively between date of first flower and flowering date, the ratio of mature pod.

Technology of Good Quality Seed Production in Snap-bean (Phaseolus vulgaris L.) (협채용 강낭콩의 채종기술 확립)

  • Kwon, Cheol-Sang;Hwang, Young-Hyun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.22
    • /
    • pp.1-12
    • /
    • 2004
  • Pod-edible bean or snap bean is a fairly new crop to domestic farmers but the national demand is steadily increasing in recent years along with the development of western food business and change in dietary patterns. At the same time, much efforts are being made to export it to foreign country, mainly to Japan. The amount of seeds introduced from outside is also continuously increasing along with the enlargement of area planted for the crop. Hybridization breeding for the crop has already been started to supply the cheaper and better seeds which will reduce the seed costs and foster the higher income to the farmers. In this experiment, several technologies related with the production of quality seeds are preliminary investigated. Some of the results obtained are summarized as follows; 1. Highly significant interaction was recognized between planting dates and no. of pods per plant and no. of branches but no interaction between planting dates and plant height and no. of nodes on main stem. Days to maturity was proportionally reduced to later planting dates. 2. Rate of viviparous pods and seeds was gradually increased in later planting dates but rate of germination was increased in earlier planting dates with lower germination rate in white seed coat grains than in colored seed ones. 3. Seed yield was higher in the earlier planting dates with a great deal of varietal difference. Early to mid April was considered to he the optimum planting dates for snap bean in Kyungbuk area. High correlation was recognized between seed yield and no. of pods per plant, no. of seeds per plant, and 100 seed weight. 4. Days to flowering was three and seven days longer in Cheongsong, high mountainous area than in Kunwi, somewhat prairie lowland. One hundred seed weight was also higher in Cheongsong than in Kunwi. Rate of viviparous grains, pods, and decayed seeds was higher in Cheongsong but, at the same time, the rate of germination and seed yield was also higher in Cheongsong. 5. One hundred seed weight of KLG5007 increased continuously up to 35days after flowering and decreased thereafter but that of KLG50027 increased to 40days after flowering and slowly reduced thereafter. The content of crude oil reached to maximum at 40 days after flowering and reduced thereafter. The rate of germination in Gangnangkong 1 was the highest, 89.3%, at 35 days after flowering and reduced thereafter while that in KLG50027 reached to maximum, 70.7%. at 40days after flowering and reduced thereafter. Thus, the optimum harvesting time for snap bean was considered to be 35~40days after flowering. 6. The snap bean pods at yellow bean stage easily became viviparous ones under saturated moisture conditions for 24 hours at $25{\sim}30^{\circ}C$. Therefore, it is recommended to harvest pods somewhat earlier than yellow-bean stage and let them do post maturing, especially when it is to be rained.

  • PDF

The time and duration of flowering in an Adonis multiflora (Ranunculaceae) population

  • Min, Byeong-Mee
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.155-163
    • /
    • 2014
  • Adonis multiflora is a spring ephemeral herb growing in temperate deciduous forests. To determine the flowering properties of a natural population of A. multiflora, air temperature, flowering time, and flower-falling were monitored from February 2009 to May 2011. The A. multiflora population in this study started flowering in early March and ended it in mid-April. The average flowering duration of a flower was 14.4 days in 2009 and 19.6 days in 2011. The average duration of flower-falling was between 3.4 days and 4.2 days for three years. Cumulative flowering rate (CFR) was correlated with year day (YD), year day index (YDI), and Nuttonson's index (Tn), with correlation coefficients (CC) of over 0.9 at the 1% significance level; CC value between CFR and YD was the largest and that between CFR and YDI was the smallest. However, at the 5% significance level, CFR was closely related with Tn more than any other factors. The CCs between flowering times of two years in each plant were high and significant at 1% level. The YD value of flowering time of a flower was inversely related to its flowering duration significantly for three years. In a given plant, when more flowering started early, the flowering duration was longer. The first flower blossomed on 73.4 YD in 2010 and 78.9 YD in 2011, and remained for 16.7 days in 2009 and 27.4 days in 2011, respectively; the fifth flower developed on 92.5 YD in 2010 and 96.6 YD in 2011, and remained for 8.0 days in 2009 and 14.6 days in 2011. The YD differences between the flowering times of two flowers decreased in the order of inflorescence.

Morphological and Phenological Comparisons of New Prunus Species - A Study on the Flower, Flowering Time, and Grafting Efficiency - (새로운 조경수 벚나무류 우량품종의 꽃의 형태적 특성 및 접목번식)

  • 박형순;이정호;안창영;김홍은
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.1
    • /
    • pp.48-53
    • /
    • 2000
  • This study was carried out to investigate the growth characteristics and propagation methods of Prunus species as woody landscape plants. Both the flowering time and the survival rate of grafting were investigated. The results are obtained as follows: The total of flowering period of Prunus species in Kyonggi province area lasted for about 26 days. The flowering time of the species overlaps. These observations suggest that the possibility of interspecific pollination among Prunus species is very high in the kyonggi province area. The total number of flowers in the species in area was in as follows decreasing order : (1) Prunus yedoensis >Prunus pendula var. ascendens > Prunus subhitella > Prunus sesrulata for. fugenzo > Prunus leveillenana var. pendula. The number of carpels in each flower ranged from 0.3 for Prunus subhirtella to 1.8 for Prunus serulata for. fugenzo. In the caseof Prunus sesrulata for. fugenzo, the carpels appeared to be degenerated and thus losted their function. However, there exist two tyoes of Prunus subhirtella. While one type had normal carpel, the other had the degenerated one. The survival rate of grafting was investigated on May 19. Eighty there percent of the plants survived when the grafting was made in the greenhouse in January whereas the plants grafted in nursery in March survived less in that Prunus suhirtella showed 64%, Prunus leveilleana var. pendula 47%, Prunus sesrulata for. fugenzo 43%, Prunus yedoensis 62% and Prunus pendula var. ascendens 24%, respectively. Therefore, it suggested that high humidity and optimal temperature appeared to incase the survival rate of the grated plants. We therefore propose here that grafting should be done in the greenhouse that both humidity and temperature could be controlled to enhance the efficiency of grafting. This will enable as to perform grafting in winter as well.

  • PDF

Distribution and synchronized massive flowering of Sasa borealis in the forests of Korean National Parks

  • Cho, Soyeon;Kim, Youngjin;Choung, Yeonsook
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.308-316
    • /
    • 2018
  • Background: Genus Sasa, dwarf bamboos, are considered to be species that lower biodiversity in the temperate forests of East Asia. Although they have a long interval, they, the monocarpic species, have a unique characteristic of large-scale synchronized flowering. Therefore, once they have flowered and then declined, it may be an opportunity for suppressed surrounding species. A previous study reported that Sasa borealis showed specialized flowering nationwide with a peak in 2015. However, this was based on data from a social network service and field survey at Mt. Jeombong. Therefore, we investigated S. borealis in the forests of five national parks in order to determine whether this rare synchronized flowering occurred nationwide, as well as its spatial distribution. Results: We found a total of 436 patches under the closed canopy of Quercus mongolica-dominated deciduous forests in the surveyed transects from the five national parks. Of these patches, 75% occupied a whole slope area, resulting in an enormous area. The patch area tended to be larger in the southern parks. Half (219 patches) of the patches flowered massively. Among them, 76% bloomed in 2015, which was consistent with the results of the previous report. The flowering rate varied from park to park with that of Mt. Seorak being the highest. The culms of the flowering patches were significantly taller (F = 93.640, p < 0.000) and thicker (F = 61.172, p < 0.000). Following the event, the culms of the flowering patches declined, providing a good opportunity for the suppressed plant species. The concurrent massive flowering of the mature patches was believed to be triggered by some stress such as a spring drought. Conclusion: We confirmed that the rare synchronized flowering of S. borealis occurred with a peak in 2015 nationwide. In addition, we explored that S. borealis not only monopolized an enormous area, but also dominated the floors of the late-successional Q. mongolica-dominated deciduous forests. This presents a major problem for Korean forests. As it declined simultaneously after flowering, there are both possibilities of forest regeneration or resettlement of S. borealis by massively produced seeds.

The characteristics of seed production in an Adonis multiflora (Ranunculaceae) population

  • Min, Byeong-Mee
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.165-175
    • /
    • 2014
  • A natural population of Adonis multiflora, a spring ephemeral herb growing in temperate deciduous forests, was studied to determine the seed production characteristics. Plant size, flowering time, and seed number were monitored from February 2009 to May 2011 in main growing season (i.e., from March through May). The biomass rates of the shoot and the root in the A. multiflora population were 22-24% and 76-78%, respectively, and the biomass of the root was proportional to that of the shoot. The flowering rate was 60% in the plants with 1 to 2 g of shoot biomass, and 100% in the plants with >2 g of shoot biomass. In the plants with root biomass between 4 and 6 g, the flowering rate was 43% and, in the plants with the root biomass over 8 g, it was 100%. The shoot biomass was a better predictor of the flower production probability than the root biomass. The number of flowers and seeds was closely correlated to shoot biomass at 1% significance level. The size of the plant that produced seed excessively instead of the shoot biomass in one year typically decreased in the next year and vice versa. The flowering time and its duration were closely related to the number of faithful seeds but not to that of total seeds. The number of faithful seeds was proportionate to flowering duration and inversely proportionate to flowering time (year day, YD). In a plant, the number of faithful seeds noticeably decreased with the inflorescence (i.e., order of flower in a plant), and this difference between the two successive flowers was significant at the 1% level between the first and the third flower in 2009 and 2011 but not between the third and the fourth. However, the number of total seeds was mostly similar in the first through the fourth flower for all three years.