• Title/Summary/Keyword: FLIGHTLAB

Search Result 8, Processing Time 0.063 seconds

A Design of Handling Quality Assessment Environment Based on FLIGHTLAB Model Using Legacy Simulator (레거시 시뮬레이터를 활용한 FLIGHTLAB 모델 기반의 조종성 평가 환경 설계 연구)

  • Yang, Chang Deok;Lee, Seung Deok;Cho, Hwan Heui;Jung, Dong Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.530-536
    • /
    • 2016
  • The handling quality simulator including high fidelity flight mechanics model is indispensable component to design and verify the flight control system. Korea Aerospace Industries, LTD. (KAI) has been performing LCH (Light Civil Helicopter) core technology development program regarding automatic flight control system (AFCS) software development. And KAI has been developing flight mechanics model using FLIGHTLAB to design and evaluate the AFCS flight control law. This paper presents the handling quality assessment environment development results through the combining FLIGHTLAB with a legacy simulator. And this paper details the FLIGHTLAB model, application development process and FLIGHTLAB interface design. The developed handling quality assessment environment has been demonstrated with the ADS-33E hover and pirouette MTE (Mission Task Element) maneuver simulation.

Prediction of Hover Performance on Development of Small-Scale UAV using Numerical and Experimental Approach (실험을 통한 소형 무인헬리콥터의 공력인자 도출 및 제자리 비행 성능 예측)

  • Lee, Byoung-Eon;Kim, Sang-Deok;Byun, Young-Seop;Song, Jun-Beum;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2548-2553
    • /
    • 2008
  • Prediction of the rotor blade performance is important for determining design factors such as weight and size in development of a small-scale helicopter. Generally, prediction of helicopter performance means the estimation of the power required for a given flight condition. However, due to lack of test data and analyzed results for small-scale rotor blade operated at low Reynolds numbers ($Re{\approx}10^5$), this is not an easy task. As an initial research, this work performs a modeling of a single rotor configuration with FLIGHTLAB and a experimental research with rotor test bed. In this process, we performed small-scale isolated single rotor by experimental and numerical method and achieved good agreement of the hover performance on the test data and simulation results.

  • PDF

Analysis on Dynamic Characteristics and LQR Control of a Quadrotor Aircraft with Cyclic Pitch (사이클릭 피치제어가 가능한 쿼드로터 항공기의 운동특성 분석과 LQR 제어)

  • Jo, Sungbeom;Jang, Se-Ah;Choi, Keeyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.217-225
    • /
    • 2013
  • Typical quadrotor aircraft use four differential thrust vectors to control the motion. In this study, we design a quadrotor aircraft using collective and cyclic control to improve the shortcomings of existing quadrotor aircraft. The quadrotor aircraft with cyclic control can fly at various attitudes due to the excessive control degrees of freedom. Hence the quadrotor aircraft with cyclic control is suitable as high performance aircraft. In this study, modeling and stability analysis of the quadrotor aircraft have been performed using FLIGHTLAB. LQR control systems were designed using linear models at various flight conditions and verified through nonlinear simulations using MATLAB.

헬리콥터 복합재료 힌지없는 허브 부품 및 패들형 블레이드 설계/해석

  • Kim, Deog-Kwan;Hong, Dan-Bi;Lee, Myeong-Kyu;Joo, Gene
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.33-44
    • /
    • 2003
  • This paper describes the design and analysis technology of composite flexure and composite paddle-type blade which are all key technologies on hingeless rotor system. Through replacing the existing metal or engineering plastic flexure part with composite part, Several required structural analysis were accomplished, which are static analysis by using NASTRAN and dynamic analysis by using FLIGHTLAB. The dynamic characteristics of composite hingeless hub attached with paddle-type blade was also investigated. Further more, small-scaled paddle-type blade was designed using froude scaled properties of existing full size blade. Through this design procedure of composite paddle-type blade, the structural design method was achieved. These results will be applied to accomplishing current project named as "the development of next-generation helicopter rotor system."

  • PDF

A Development of Small-scaled Composite Blade for the Hingeless Rotor System of Helicopter (헬리콥터 힌지없는 로터 시스템용 축소 복합재료 블레이드 개발)

  • Kim, Deog-Kwan;Joo, Gene
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.206-209
    • /
    • 2001
  • This paper contains the development procedure of small-scaled composite rotor blade for helicopter hingeless rotor system. Composite blade design is conducted by using CORDAS program developed by KARI and dynamic analysis is conducted by using Flightlab which is commercial software for helicopter analysis. Also the optimizing procedure of iterative design was described. The designed composite blades were manufactured after establishing the effective curing method. Through this research, the experiences of composite rotor blade development were accumulated and will be applied to the related research field.

  • PDF

Development of a Component Based Helicopter Simulation Program (요소 기반의 헬리콥터 시뮬레이션 프로그램 개발)

  • Shin, Jae-Hwa;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.548-555
    • /
    • 2007
  • Typical helicopter simulation programs rely on differential equations of a closed form. However, since these equations are derived using various assumptions, their usefulness is limited to small flight regions and specific model types. This paper presents a component based rotorcraft simulation program. The program adopts methods of multi-body dynamics and is written in an object-oriented programming language. The program was validated using an AH-1G helicopter simulation. The trim results are well matched with flight test data. It is also shown that program is capable of running in real-time on a desktop computer.

A Structural Design and Manufacture of Paddle type Small-scaled Composite Blade for Hingeless Rotor System of Helicopter (헬리콥터 힌지없는 로터 시스템용 패들형 축소 복합재료 블레이드 구조 설계 및 제작)

  • Kim, Deog-Kwan;Hong, Dan-Bi;Lee, Myung-Kyu;Joo, Gene
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.220-223
    • /
    • 2002
  • This paper introduces the development procedure of paddle type small-scaled composite rotor blade for helicopter hingeless rotor system. Paddle type composite blade design was done by using CORDAS program developed by KARI and dynamic analysis for hingeless hub with blade is done by using FLIGHTLAB which is commercial software for helicopter comprehensive analysis. The procedure to manufacture complicated shape of paddle type blade tip was developed and composite blades were manufactured after establishing the effective curing method. Through this research, the development technology of composite rotor blade with complex aerodynamic shape were accumulated and these will be applied to the related research field, for example, full size composite blade development, etc.

  • PDF

Development of Mach Small-scaled Composite Blade for Helicopter Articulated Rotor System (헬리콥터 관절형 로터 시스템용 마하 축소 복합재료 블레이드 개발)

  • Kim, Deog-Kwan;Song, Keun-Woong;Kim, Joune-Ho;Joo, Gene
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.57-60
    • /
    • 2003
  • This Paper contains the development procedure of Mach small-scaled composite rotor blade for helicopter articulated rotor system. This mach small-scaled composite blade design is conducted by using CORDAS program developed by KARI. The Dynamic analysis for an articulated rotor system with this blade is conducted by using FLIGHTLAB which is commercial software for helicopter analysis. Also the optimizing procedure of iterative design was described. The designed composite blades were manufactured after establishing the effective curing method. For small-scaled rotor test, strain gauges were embedded in composite blade spar to obtain bending & torsion strain value. To verify sectional properties of a blade, the bench test is accomplished. After comparing a designed data and tested data, Dynamic Calculation was repeated using tested data. Through this research, experiences of mach small-scaled composite blade development were accumulated and will be applied to the related research field.

  • PDF