• Title/Summary/Keyword: FLC(fuzzy logic controller)

Search Result 225, Processing Time 0.023 seconds

Position and Velocity Control of AM1 Robot Using Self-Organization Fuzzy Control Technology (자기구성 퍼지 제어기법에 의한 AM1 로봇의 위치 및 속도 제어)

  • Kim, Jong-Su;Chung, Yun-Gyo;Han, Seong-Hyeon;Lee, Jin;Chang, Yeong-Hui
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.102-107
    • /
    • 2000
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In tile synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules.

  • PDF

Intelligent Path Planning and Following for Coordinated Control of Heterogeneous Marine Robots (이종 해양로봇의 협력제어를 위한 지능형 경로 계획 및 추종)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.831-836
    • /
    • 2010
  • In real system application, the path planning and following system for the coordinated control of heterogeneous marine robots based on the underwater acoustic communication has the following problems: surface and underwater robots have different maneuvering properties, an underwater robot requires more effective operating, it has a limited communication range because of the transmission loss (TL) of acoustic wave, it has a communication error because of the Doppler distortion of acoustic wave, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent path planning algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC) based on system modeling, is proposed. To verify the performance of the proposed algorithm, the path planning and following of an underwater robot is performed according to the maneuvering of a surface robot. Simulation results show that the proposed algorithm effectively solves the problems.

An Optimal Design of Neuro-Fuzzy Logic Controller Using Lamarckian Co-adaptation (라마키안 상호 적응에 의한 뉴로-퍼지 제어기의 최적 설계)

  • 이한별;김대진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.384-389
    • /
    • 1998
  • 본 논문은 특정 응용에 적합한 퍼지 제어기의 최적 설계 파라메터(퍼지 규칙과 소속 함수)를 찾는데 역전파 학습 과정과 유전 알고리즘을 결합한 Lamarckian 상호적응 기법을 이용한 뉴로-퍼지 제어기의 새로운 설계 방법을 제안한다. 설계 파라메타들은 진화에 의한 전역적 탐색을 통해 높은 포함값과 유용한 퍼지 규칙들을 갖는 규칙 베이스와 작은 근사화 오차와 좋은 제어 성능을 갖는 소속 함수들을 얻도록 제어기간 파라메타 조절을 수행하며, 학습에 의한 국부적 탐색을 통해 각 퍼지 제어기가 원하는 제어 결과를 나타내도록 제어기내 파라메타 조절을 수행한다. 제안한 상호적응 설계 방법은 유전 알고리즘의 모든 세대에서 역전파 학습이 이루어지므로 보다 좋은 근사화 능력을 나타나고, 사용한 무게 중심 비퍼지화기가 정확한 비퍼지화값을 계산하므로 보다 좋은 제어 성능을 가지며, 퍼지 규칙 베이스와 소속 함수들의 최적화 탐색 과정이 입출력 공간의 같은 퍼지 분할 상에서 통합된 적응 함수에 의하여 동시에 수행되므로 탐색을 위한 작업 공간이 아주 작아지는 장점이 있다. 시뮬레이션 결과는 Lamarckian 상호 적응에 의해 얻어진 FLC가 퍼지 규\ulcorner 수, 근사화 능력, 제어 성능등 모든면에서 다른 방법에 의해 얻어진 FLC보다 가장 우수함을 보여준다.

  • PDF

Performance Improvement of Spindle Induction Motor in Field Weakening Region Using Furry Controller (퍼지제어기를 이용한 약계자영역에서 스핀들유도전동기의 성능 개선)

  • Sin, Soo-Cheol;Yu, Jae-Sung;Hwang, Sun-Mo;Kim, Hong-Ju;Won, Chung-Yeun;Kim, Young-Real
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.461-466
    • /
    • 2005
  • This paper presents a new speed control scheme of the spindle induction motor (IM) using fuzzy-logic control in fold weakening region. The implementation of the proposed FLC-based spindle IM are investigated and compared to those obtained from the conventional PI controller based drive system, we have confirmed good simulation and experimental results at different dynamic operating conditions such as sudden change in command speed, step change, etc.

  • PDF

Design of STATCOM Stabiliser for Improving Power System Stability (전력계통 안정도 향상을 위한 STATCOM 안정화 장치 설계)

  • Lee, Seok-Oh;Jung, Young-Min;Mun, Kyeong-Jun;Hwang, Gi-Hyun;Park, June-Ho;Lee, Jeong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.149-151
    • /
    • 2001
  • This paper proposes the design of STATCOM(static synchronous compensator) stabilizer for improving power system stability using fuzzy logic controller(FLC). The STATCOM DC voltage regulator contributes negative damping to the power system as the installation of STATCOM DC voltage regulator. STATCOM stabiliser is superimposed on the AC voltage regulator to compensate the negative damping effect. To evaluate usefulness of the proposed method, we perform the nonlinear simulation on a single-machine infinite bus system. As results of the simulations, the proposed method shows better control performance than PI controller in terms of damping effects.

  • PDF

Study on Local Path Control Method based on Beam Modeling of Obstacle Avoidance Sonar (장애물회피소나 빔 모델링 기반의 국부경로제어 기법 연구)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.218-224
    • /
    • 2012
  • Recently, as the needs of developing the micro autonomous underwater vehicle (AUV) are increasing, the acquisition of the elementary technology is urgent. While they mostly utilizes information of the forward looking sonar (FLS) in conventional studies of the local path control as an elementary technology, it is desirable to use the obstacle avoidance sonar (OAS) because the size of the FLS is not suitable for the micro AUV. In brief, the local path control system based on the OAS for the micro AUV operates with the following problems: the OAS offers low bearing resolution and local range information, it requires the system that has reduced power consumption to extend the mission execution time, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent local path control algorithm based on the beam modeling of OAS with the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance and analyze the characteristic of the proposed algorithm, the course control of the underwater flight vehicle (UFV) is performed in the horizontal plane. Simulation results show that the feasibility of real application and the necessity of additional work in the proposed algorithm.

Experimental Evaluation of Seismic Response Control Performance of Smart TMD (스마트 TMD의 지진응답 제어성능 실험적 검토)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.49-56
    • /
    • 2022
  • Tuned mass damper (TMD) is widely used to reduce dynamic responses of structures subjected to earthquake loads. A smart tuned mass damper (STMD) was proposed to increase control performance of a traditional passive TMD. A lot of research was conducted to investigate the control performance of a STMD based on analytical method. Experimental study of evaluation of control performance of a STMD was not widely conducted to date. Therefore, seismic response reduction capacity of a STMD was experimentally investigated in this study. For this purpose, a STMD was manufactured using an MR (magnetorheological) damper. A simple structure presenting dynamic characteristics of spacial roof structure was made as a test structure. A STMD was made to control vertical responses of the test structure. Two artificial ground motions and a resonance harmonic load were selected as experimental seismic excitations. Shaking table test was conducted to evaluate control performance of a STMD. Control algorithms are one of main factors affect control performance of a STMD. In this study, a groundhook algorithm that is a traditional semi-active control algorithm was selected. And fuzzy logic controller (FLC) was used to control a STMD. The FLC was optimized by multi-objective genetic algorithm. The experimental results presented that the TMD can effectively reduce seismic responses of the example structures subjected to various excitations. It was also experimentally shown that the STMD can more effectively reduce seismic responses of the example structures conpared to the passive TMD.

A Modified Fuzzy logic Based DASH Adaptation Algorithm (변형된 퍼지 논리 기반의 DASH 적응 알고리즘)

  • Kim, Hyun-Jun;Son, Ye-Seul;Kim, Jun-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.197-200
    • /
    • 2017
  • 퍼지 논리를 기반으로 한 적응형 스트리밍 기법인 FDASH 적응 알고리즘은 빠르게 변하는 네트워크 상황에서 우수한 콘텐츠의 화질을 보장하면서 끊김 없는 서비스를 제공하는 특성을 보이지만 비디오의 화질이 자주 변하기 때문에 최고의 사용자 체감 품질 (QoE: Quality of Experience)을 제공하지 못 할 수도 있다. 본 논문에서는 제한된 버퍼 크기를 가지고 동일한 콘텐츠의 화질을 보장하면서도 비디오 화질의 변화 횟수를 줄여서 최적의 QoE를 제공할 수 있도록 하는 변환된 퍼지 논리 기반의 DASH 적응 알고리즘을 제안하고자 한다. 제안된 방식은 우선 퍼지 논리 제어부(FLC : Fuzzy Logic Controller)의 수정을 통하여 다음 세그먼트의 비트율에 대해 최적의 판단을 하도록 하였고, 세그먼트 비트율 필터링 모듈 (SBFM: Segment Bitrate Filtering Module)을 추가하여 비디오 화질의 변화 횟수가 최소화 될 수 있도록 하였으며, 스트리밍 서비스 시작 시 SBFM에 의해 일정시간 저화질의 비디오를 시청해야 하는 상황을 막기 위한 Start Mechanism을 추가하였고, 마지막으로 버퍼의 오버플로우를 방지하기 위해 Sleeping Mechanism을 추가하였다. NS-3를 이용한 네트워크 모의실험 결과를 통해 제안된 방식이 FDASH 방식에 비하여 제한된 버퍼크기 상황 하에서도 오버플로우가 발생하지 않으며 점대점(Point to Point) 상황에서는 거의 동일 화질 성능을 보이면서도 비디오 화질 변화 횟수를 50% 이상 줄일 수 있음과 일반 Wifi환경에서는 오히려 17.8%정도 더 뛰어난 비디오 화질 성능을 보이면서 비디오 화질변화 횟수 측면에서는 53.1%정도 줄일 수 있음을 보여준다.

  • PDF

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers

  • Eliasi, Hussein;Yazdani, Hessam;Khatibinia, Mohsen;Mahmoudi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.633-645
    • /
    • 2022
  • The active tuned mass damper (ATMD) is an efficient and reliable structural control system for mitigating the dynamic response of structures. The inertial force that an ATMD exerts on a structure to attenuate its otherwise large kinetic energy and undesirable vibrations and displacements is proportional to its excursion. Achieving a balance between the inertial force and excursion requires a control law or feedback mechanism. This study presents a technique for the optimum design of a sliding mode controller (SMC) as the control law for ATMD-equipped structures subjected to earthquakes. The technique includes optimizing an SMC under an artificial earthquake followed by testing its performance under real earthquakes. The SMC of a real 11-story shear building is optimized to demonstrate the technique, and its performance in mitigating the displacements of the building under benchmark near- and far-fault earthquakes is compared against that of a few other techniques (proportional-integral-derivative [PID], linear-quadratic regulator [LQR], and fuzzy logic control [FLC]). Results indicate that the optimum SMC outperforms PID and LQR and exhibits performance comparable to that of FLC in reducing displacements.