• Title/Summary/Keyword: FINITE ELEMENT ANALYSIS

Search Result 16,835, Processing Time 0.045 seconds

Vibration Analysis of Opening Thick Plate Subjected to Static Inplane Stress (정면내응력을 받는 유공 후판의 진동해석)

  • 김일중;오숙경;박형복;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.797-801
    • /
    • 2003
  • This paper has the object of investigating natural frequencies of opening thick plates on Pasternak foundation by means of finite element method and providing Kinematic design data for mat of building structures. Vibration analysis that opening plate subjected to In-plane stress is presented in this paper. Finite element analysis of rectangular opening plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is supported on Pasternak foundation, the Winkler foundation parameter is varied with 0, 10, 102, 103 and the shear foundation parameter is 0, 5, 10, 15. The ratio of In-plane force to critical load is applied as 0.2, 0.8, respectively. This paper analyzed varying opening Position and opening size.

  • PDF

Finite Element Analysis of the Coiling Process of Hot Bar in coil Box of Mini-Mill (미니밀 코일박스의 권취공정에 대한 유한요소 해석)

  • 이호국;이상로
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.32-39
    • /
    • 1997
  • The coiling station of ISP coil box is an equipment that winds a hot bar rolled at reduction unit into a coil without mandrel. In the coiling process, the roll gap of the bending unit is a significant one of several factors that influence bar coiling. To obtain a good bar-coil, the roll gap must be set appropriately according to the bar thickness. In this study, with 2-dimensional isothermal elastic-plastic finite element method, authors investigated influence of the change of the roll gap on the initial coiling shapes and the formed inner diameters of coils. Based on finite element analysis, authors proposed the appropriate roll gap according to the bar thickness to be able to wind a hot bar. The inner diameters of coils by results of analysis comparatively agreed with coling operation conducted in plant.

  • PDF

Finite Element Formulations of the Rotor-Bearing System for Whirl Speed Analysis (로터-베어링 시스템의 훨링속도 해석을 위한 유한요소 정식화)

  • Yun, Seong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.625-630
    • /
    • 2007
  • This paper accounts for derivations and formulations of the finite element dynamic equation of the rotor-bearing system to analyze its whirling speed. It turns out to be a different form from previous researcher's because of different successive sequences of Euler angles. Correspondingly the adoption of other rotation tensor will be needed for a consistent derivation of the dynamic equation. The process of its finite element formulation with consistent mass matrix and gyroscopic matrix involves a general definition of the modal analysis or the Eigen analysis for the damped system in the inertial frame and rotating frame, respectively.

  • PDF

Analysis of Thermal Deformations of Shadow Mask and Electronic Beam Mislanding (쉐도우마스크의 열변형과 전자빔의 오차 해석)

  • 김현규;박영호;김상기;임세영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.81-90
    • /
    • 1994
  • Finite element analysis is performed for transient thermal deformation of a shadow mask inside the Braun tube and the landing shift or mislanding of the electronic beam is calclated. The shadow mask has numerous slits through which the electronic beams are guided to land on the designed phosphor. Its thermal deformations therefore cause the mislanding of the electronic beam and result in decolorization of a screen. For realistic finite element analysis, firstly the effective thermal conductivity and the effective elastric modulus are calculated, and the shadow mask is modeled as shell without slits. Next the nonlinear finite element formulation is developed for transient heat transfer on the shadow mask, wherein thermal radiation is a major heat transfer mechanism. Analysis of the resulting thermoelastic deformations is followed, from which the mislanding of the electronic beam is obtained. The present finite element scheme may be efficiently used for thermal deformation design of a shadow mask.

  • PDF

Flexural behaviour of fibre reinforced geopolymer concrete composite beams

  • Vijai, K.;Kumutha, R.;Vishnuram, B.G.
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.437-459
    • /
    • 2015
  • An experimental investigation on the behaviour of geopolymer composite concrete beams reinforced with conventional steel bars and various types of fibres namely steel, polypropylene and glass in different volume fractions under flexural loading is presented in this paper. The cross sectional dimensions and the span of the beams were same for all the beams. The first crack load, ultimate load and the loaddeflection response at various stages of loading were evaluated experimentally. The details of the finite element analysis using "ANSYS 10.0" program to predict the load-deflection behavior of geopolymer composite reinforced concrete beams on significant stages of loading are also presented. Nonlinear finite element analysis has been performed and a comparison between the results obtained from finite element analysis (FEA) and experiments were made. Analytical results obtained using ANSYS were also compared with the calculations based on theory and presented.

Finite Element Analysis on Impedance Parameters of Anchor Plate of Structural Cables Under Cable Force Changes (구조용 케이블의 장력 변화에 따른 정착부의 임피던스 특성에 대한 유한요소해석)

  • Nguyen, Khac-Duy;Park, Jae-Hyung;Hong, Dong-Soo;Lee, Ju-Won;Kim, Jeong-Tae;Na, Won-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.783-786
    • /
    • 2010
  • This paper presents a finite element analysis on impedance parameters of anchor plates of structural cables under the change in cable forces. To achieve the objective, four approaches are implemented as follows: Firstly, theoretical background of electro-mechanical impedance is described. Secondly, anchor plates of structural cables are selected to experimentally examine the relationship between impedance parameters and cable force changes. Thirdly, finite element analysis is performed to verify the experimental results. Fourthly, a comparison between the experimental and numerical analysis on impedance parameters of anchor plate of structural cables under cable force changes is carried out.

  • PDF

Evaluation on Failure Characteristics of the Local Wall Thinning Elbows Using Three Dimensional Finite Element Analysis (3차원 유한요소해석을 이용한 엘보우의 감육 결함 특성 평가)

  • 김태순;박치용;김진원;박재학
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.39-45
    • /
    • 2003
  • The failure mode of a pipe due to local wall thinning is increasingly more attention in the nuclear power plant industry. To assess the integrity of locally wall thinned pipe, it is necessary to perform many simulations under various conditions. Because the modeling for locally wall thinned elbow is more complicated than that of straight pipe the efficient modeling method for finite element analysis is necessary. In this study, the more simple efficient modeling method of three-dimensional finite element analysis for locally wall thinned elbow has been suggested and verified. And using the method, the failure mode of local wall thinned elbows that have different thinning lengths and circumferential angles is evaluated. From the results, we concluded that the collapse load of elbows has been decreased by the increase of wall thinning shape factors such as thinning lengths and circumferential angles.

Calculations of Resistance and Inductance of End Ring of the Squirrel Cage Induction Motor for 2-Dimensional Finite Element Analysis (농형 유도전동기의 2차원 유한요소해석을 위한 엔드링 저항과 인덕턴스 계산)

  • Chung, H.J.;Shin, P.S.;Woo, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.872-873
    • /
    • 2007
  • This paper proposes a calculating method of resistance and inductance of end ring of squirrel cage induction motor for 2D finite element analysis. The squirrel cage of induction motor consists of bars and end rings. The resistance and inductance of end ring have an effect on the result of the finite element calaculation. If the end ring were excluded from the analysis, the good result could not be obtained. Therefore, we first simulate an axisymmetric magnetodynamic analysis for the end ring, and then calculate the interbar resistance and the end ring inductance. The calculated values are put into the external circuit of 2D finite element model of the induction motor. The proposed method is verified by comparing the numerical results with the experimental ones.

  • PDF

Finite Element Analysis of the R-value of a 2-Layer Clad Steel (2층 클래드 강재의 유한요소해석을 이용한 이방성지수 계산)

  • Kim, J.G.;Park, B.H.;Kim, S.K.;Chin, K.G.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.5
    • /
    • pp.311-316
    • /
    • 2014
  • In the current study, the R-value behavior of a two-layer clad steel was investigated using finite element analysis. Hill's 1948 anisotropic yield equation was employed to characterize the anisotropic behavior of the steel with different assumed properties: isotropic (R=1) and anisotropic (R=2). Experimental R-values were determined by measuring the width and thickness ratios of tensile specimens. Finite element analysis results demonstrate a difference in strain behavior in the width and the thickness directions of the clad steel. The R-value behavior depends on the fraction of the clad materials and total elongation.

The Finite Element Analysis and the Optimum Geometric Design of Linear Motor

  • Lee Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.73-77
    • /
    • 2005
  • Linear motor has been considered to be the most suitable electric machine for linear control with high speed and high precision. Thrust of linear motor is one of the important factors to specify motor performance. Maximum thrust can be obtained by increasing the magnitude of current in conductor and is relative to the sizes of conductor and magnet. However, the magnitude of current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find optimum design that can effectively maximize thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and numerical solutions were compared with experiments. The temperature of the conductor was calculated from the experimentally determined thermal resistance. The ADPL of ANSYS was used for the optimum design process, which is commercial finite element analysis software. Design variables and constraints were chosen based on manufacturing feasibility and existing products. As a result, it is shown that temperature of linear motor plays an important role in determining optimum design.