• Title/Summary/Keyword: FIAS

Search Result 9, Processing Time 0.034 seconds

Measurement of Glucose Concentration Using a Bio-Sensor$(\mu{FIAS)}$ (바이오 센서$(\mu{FIAS)}$를 이용한 Glucose 농도 측정)

  • ;Joseph Irudayaraj
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.02a
    • /
    • pp.209-214
    • /
    • 2003
  • 바이오 센서는 생물학적 인식 반응(Biological recognition reaction)이나 생물 촉매 공정(Bio-catalytic process)을 측정 가능한 전기적 신호로 변환시켜주는 적절한 변환기(Transducer)와 같은 생물학적 인식요소로 이루어진 감지 장치를 의미한다. 1962년 효소를 이용한 Glucose 전극봉의 개발이후 이 분야에 대한 수많은 연구와 기기의 개발이 진행되어왔다. 분석도구로써 바이오 센서는 효소, 항체, 수용체, 세포, 조직 등과 같은 생물학적 인식 요소들에 광범위하게 적용 가능하다는 장점이 있는 반면, 위에 열거한 생물학적 인식 요소들의 불안정성으로 인해 신뢰성이 유지되지 못하는 단점을 동시에 지니고 있다. (중략)

  • PDF

Development of Numerical Model for Flood Inundation Analysis in a River with GIS Application

  • Lee, Hong-Rae;Han, Kun-Yeun;Kim, Sang-Ho;Choi, Hyun-Sang
    • Korean Journal of Hydrosciences
    • /
    • v.10
    • /
    • pp.59-72
    • /
    • 1999
  • FIAS(Flood Inundation Analysis System) using Arc/Info is developed and applied to the Namhan River basin. The DWOPER model is revised and expanded to handle simultaneous multiple overtopping and/or breaking, and to estimate the inundated depth and extents. The model is applied to an actual levee overtopping case, which occurred on August 23∼27, 1995 in the Namhan River. Stage hydrographs inside and outside of the levee are compared, then inundated discharges from overbank spilling are computed. The Graphic User interface is developed with AML. Two- and three-dimensional inundation map by Arc/Info are presented. The computed inundation extends agree with observations in terms of inundated depth and flooded area. The FIAS is useful for the analysis of flood hazards and preparation of inundation map for river basins.

  • PDF

Numerical Model for Flood Inundation Analysis in a River(I) : GIS Application (하천 홍수범람해석을 위한 수치모형의 개발(I) : GIS와의 연계해석)

  • Lee, Hong-Rae;Han, Geon-Yeon;Kim, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.415-427
    • /
    • 1998
  • FIAS (Flood Inundation Analysis System) using Arc/Info is developed and applied to the South Han River basin. The DWOPER model is revised and expanded to handle simultaneous multiple overtopping and/or breaking and to estimate the inundation depth and extents. The model is applied to an actual levee overtopping case, which occurred on August 23~27, 1995 in the South Han River. Stage hydrographs inside and outside of the levee are compared, then inundated discharges from overbank spilling are computed. The Graphic User Interface is developed with AML(Arc/Info Macro Language). Two-and three-dimensional inundation maps by Arc/Info are presented. The computed inundation extends agree with observations in terms of inundation depth and flooded area. Keywords : River, Floodwave, Flood Inundation, Geographic Information System.

  • PDF

Whole Exome Sequencing in Patients with Phenotypically Associated Familial Intracranial Aneurysm

  • Yunsun Song;Jong-Keuk Lee;Jin-Ok Lee;Boseong Kwon;Eul-Ju Seo;Dae Chul Suh
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.101-111
    • /
    • 2022
  • Objective: Familial intracranial aneurysms (FIAs) are found in approximately 6%-20% of patients with intracranial aneurysms (IAs), suggesting that genetic predisposition likely plays a role in its pathogenesis. The aim of this study was to identify possible IA-associated variants using whole exome sequencing (WES) in selected Korean families with FIA. Materials and Methods: Among the 26 families in our institutional database with two or more IA-affected first-degree relatives, three families that were genetically enriched (multiple, early onset, or common site involvement within the families) for IA were selected for WES. Filtering strategies, including a family-based approach and knowledge-based prioritization, were applied to derive possible IA-associated variants from the families. A chromosomal microarray was performed to detect relatively large chromosomal abnormalities. Results: Thirteen individuals from the three families were sequenced, of whom seven had IAs. We noted three rare, potentially deleterious variants (PLOD3 c.1315G>A, NTM c.968C>T, and CHST14 c.58C>T), which are the most promising candidates among the 11 potential IA-associated variants considering gene-phenotype relationships, gene function, co-segregation, and variant pathogenicity. Microarray analysis did not reveal any significant copy number variants in the families. Conclusion: Using WES, we found that rare, potentially deleterious variants in PLOD3, NTM, and CHST14 genes are likely responsible for the subsets of FIAs in a cohort of Korean families.

Measurement of Glucose Concentration Using a μFIA Biosensor (μFIA 바이오 센서를 이용한 포도당 농도 측정)

  • ;Joseph Irudayaraj
    • Journal of Biosystems Engineering
    • /
    • v.28 no.5
    • /
    • pp.465-468
    • /
    • 2003
  • A microdialysis coupled flow injection amperometric biosensor was calibrated to measure the concentration of glucose using 7 standard samples from 10ml to 70ml of glucose solution. The output of the sensor increased linearly with an increase in the glucose concentration with an $R^2$ correlation of 0.99. The amperometric biosensor was then applied to measure the. glucose concentration of 2 commercial samples(Orange and Pineapple juice) and the results compared with HPLC. Around 12% error was observed in glucose concentration measurements of the samples analyzed. The sensor has potential in rapid measurement once the calibration is done. Potential for on-line sensing is also discussed.

Causes and Measures of Flood Damage ('99.8) in Imjin River Basin (임진강 유역 대홍수 ('99,8)의 피해 원인과 대책)

  • 김현영;이용직
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.454-458
    • /
    • 1999
  • This study is to analyze the causes of flood damage in Imjin river basin inAugust , 1999. and to propose the measure to reudce such flood damage. The northern part of Kyonggin Province in the basin was severely damaged by flood due to the heavy rainfall for 4 days from 31 July to 3 August, whioch was recordedas 1,032mm. The heavy rainfall worth recording was one of main cuasese of such damage, but unsuitable river improvement and basin management were also important causes. The flood proptection works such as flood control reservoir and riverlevee were not contructed or sufficient in spite of the unflavorable geographical conditions of Imjin reiver. In case of irrigatiion faciliteis, 43 pumping stations in 3 FIAs were severely damaged due to inundation of the pump and switch boxes. The protection works for pump room should be improved to reduce the damage due to inundation.

  • PDF

Floating Inverter Amplifiers with Enhanced Voltage Gains Employing Cross-Coupled Body Biasing

  • Jae Hoon Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.12-17
    • /
    • 2024
  • Floating inverter amplifiers (FIAs) have recently garnered considerable attention owing to their high energy efficiency and inherent resilience to input common-mode voltages and process-voltage-temperature variations. Since the voltage gain of a simple FIA is low, it is typically cascaded or cascoded to achieve a higher voltage gain. However, cascading poses stability concerns in closed-loop applications, while cascoding limits the output swing. This study introduces a gain-enhanced FIA that features cross-coupled body biasing. Through simulations, it is demonstrated that the proposed FIA designed using a 28-nm complementary metal-oxide-semiconductor technology with a 1-V power supply can achieve a high voltage gain (> 90 dB) suitable for dynamic open-loop applications. The proposed FIA can also be used as a closed-loop amplifier by adjusting the amount of positive feedback due to the cross-coupled body biasing. The capability of achieving a high gain with minimum-length devices makes the proposed FIA a promising candidate for low-power, high-speed sensor interface systems.

Reference Value of Mercury in Liver and Kidney of Korean (한국인의 간과 콩팥조직 내 수은 함유량의 참고치)

  • 최병선;박영주;권일훈;홍연표;박정덕
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.2
    • /
    • pp.109-115
    • /
    • 2002
  • This study was conducted to investigate the reference value of mercury (Hg) in liver and kidney of Korean population. The mercury concentration in 244‘sudden and unexpected death’autopsies (male: 180, female: 64) aged from 0 to 87 years was analyzed. The concentration of mercury was measured by atomic absorption spectrophotometer (Perkin-Elmer Model 5100) with mercury/hydride generating system (FIAS 400). The contents of mercury in liver and kidney fitted well the log-normal distribution rather than normal distribution. Geometric mean concentration of mercury in liver and kidney was 0.115 $\mu\textrm{g}$/g wet weight and 0.149 $\mu\textrm{g}$/g wet weight, respectively. Geometric mean concentration of mercury in female was higher than in male (p < 0.01). The mercury content in liver and kidney increased with age up to the forties and slightly decreased there-after. The regression model of mercury deposit in liver and kidney by age was predicted as the following equation : Log LHg : -1.0576+0.0045$.$Age-0.0001$.$Age$^2$+0.0873$.$Sex, Log KHg = -1.0576+0.0152$.$Age-0.0002$.$Age$^2$+0.1935$.$Sex. The liver burden of mercury was estimated to be 158.3∼161.3 $\mu\textrm{g}$ in male and 163.0∼166.9 $\mu\textrm{g}$ in female. The kidney burden of mercury was estimated to be 42.0∼42.9 $\mu\textrm{g}$ in male and 55.5∼57.1 $\mu\textrm{g}$ in female.

Comparisons of Urinary Arsenic Analysis by Pre-reductant for Preconditioning via the FI-HG-AAS Method (FI-HG-AAS를 이용한 전처리 과정에서 사용되는 예비환원제의 종류에 따른 요중 비소 분석결과 비교)

  • Choi, Seung-Hyun;Choi, Jae Wook;Cho, YongMin;Bae, Munjoo
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.289-298
    • /
    • 2015
  • Objectives: The method of analyzing urinary arsenic by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) is generally used because it shows relatively greater sensitivity, low detection limits, low blocking action, and is simple to operate. In this study, the results of analysis according to three pre-reductants commonly used in the FI-HG-AAS method were compared with each other. Methods: To analyze urinary arsenic, nineteen urine samples were collected from adults aged 43-79 years old without occupational arsenic exposure. Analysis equipment was FI-HG-AAS (AAnalyst 800/FIAS 400, Perkin- Elmer Inc., USA). The three pre-reductants were potassium iodide (KI/AA), C3H7NO2S (L-cysteine), and a mixture of KI/AA and L-cysteine (KI/AA&L-cysteine). Results: In the results of the analysis, the recovery rate of the method using KI/AA was 82.3%, 95.7% for Lcysteine, and 123.5% for KI/AA and L-cysteine combined. When compared with the results by use of high performance liquid chromatography inductively-coupled plasma mass spectrometry (HPLC-ICP-MS), the method using L-cysteine was the closest to those using HPLC-ICP-MS ($98.57{\mu}g/L$ for HPLC-ICP-MS; $74.96{\mu}g/L$ for L-cysteine; $69.23{\mu}g/L$ for KI/AA and L-cysteine; $13.06{\mu}g/L$ for KI/AA) and were significantly correlated (R2=0.882). In addition, they showed the lowest coefficient of variation in the results between two laboratories that applied the same method. Conclusion: The efficiency of hydride generation is considered highly important to the analysis of urinary arsenic via FI-HG-AAS. This study suggests that using L-cysteine as a pre-reductant may be suitable and the most rational among the FI-Hg-AAS methods using pre-reductants.