• Title/Summary/Keyword: FGF2 gene

Search Result 45, Processing Time 0.038 seconds

Effect of basic fibroblast growth factor on osteopontin gene expression (Basic fibroblast growth factor가 osteopontin 유전자 발현에 미치는 영향)

  • Bae, Won-Su;Kim, Hyun-Jung;Ryoo, Hyun-Mo;Kim, Young-Jin;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.2
    • /
    • pp.300-308
    • /
    • 2000
  • The Fibroblast growth factors(FGFs) plays an important role in the control of osteogenesis during skeletal development. Especially, FGF-2 is a potent mesodermal inducer during embryogenesis and FGF receptors (FGFRs) messages are strongly expressed in developing bones. In this study, we investigated the effect of bFGF on osteopontin(OPN) gene expression in ST-2 cells and tried to elucidate the mechanism of its stimulatory effects. The obtain results were as follows; The treatment of bFGF(1ng/ml) upregulates OPN, fibronectin mRNA levels and downregulates type I collagen mRNA levels. But, there was no remarkable difference in alkaline phosphatase mRNA levels between two groups. The OPN gene expression increased in a dose-dependent manner up to 10ng/ml and OPN gene began to occur at around 3h with continuous increase up to 24h then decreased to basal level at 48h. 30 minutues pretreatment with cycloheximide (500ng/ml), a protein synthesis inhibitor, prior to addition bFGF resulted in blocking bFGF induced OPN expression. These results suggest that bFGF increased the level of OPN mRNA in a dose and time-dependent manner via the synthesis of certain transcriptional regulatory proteins.

  • PDF

Association Study of Fibroblast Growth Factor 2 and Fibroblast Growth Factor Receptors Gene Polymorphism in Korean Ossification of the Posterior Longitudinal Ligament Patients

  • Jun, Jae-Kyun;Kim, Sung-Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.1
    • /
    • pp.7-13
    • /
    • 2012
  • Objective : The aim of this study was to determine whether single nucleotide polymorphisms (SNPs) of fibroblast growth factor (FGF) 2 gene and fibroblast growth factor receptor (FGFR) genes are associated with ossification of the posterior longitudinal ligament (OPLL). Methods : A total of 157 patients with OPLL and 222 controls were recruited for a case control association study investigating the relationship between SNPs of FGF2, FGFR1, FGFR2 and OPLL. To identify the association among polymorphisms of FGF2 gene, FGFR1, FGFR2 genes and OPLL, the authors genotyped 9 SNPs of the genes (FGF2 : rs1476217, rs308395, rs308397, and rs3747676; FGFR1 : rs13317 and rs2467531; FGFR2 : rs755793, rs1047100, and rs3135831) using direct sequencing method. SNPs data were analyzed using the SNPStats, SNPAnalyzer, Haploview, and Helixtree programs. Results : Of the SNPs, a SNP (rs13317) in FGFR1 was significantly associated with the susceptibility of OPLL in the codominant (odds ratio=1.35, 95% confidence interval=1.01-1.81, p=0.048) and recessive model (odds ratio=2.00, 95% confidence interval=1.11-3.59, p=0.020). The analysis adjusted for associated condition showed that the SNP of rs1476217 (p=0.03), rs3747676 (p=0.01) polymorphisms in the FGF2 were associated with diffuse idiopathic skeletal hyperostosis (DISH) and rs1476217 (p=0.01) in the FGF2 was associated with ossification of the ligament flavum (OLF). Conclusion : The results of the present study revealed that an FGFR1 SNP was significantly associated with OPLL and that a SNP in FGF2 was associated with conditions that were comorbid with OPLL (DISH and OLF).

Fibroblast Growth Factor 4 (FGF4) Expression in Malignant Skin Cancers (악성 피부 종양에서의 Fibroblast Growth Factor 4 (FGF4) 발현)

  • Cho, Moon-Kyun;Song, Woo-Jin;Kim, Chul-Han
    • Archives of Plastic Surgery
    • /
    • v.38 no.3
    • /
    • pp.217-221
    • /
    • 2011
  • Purpose: FGF4 (fibroblast growth factor 4) is a newly characterized gene which was found to be a transforming gene in several cancerous cells. FGF4 expression and amplification has been subsequently observed in several human cancers including stomach cancer, breast cancer, head and neck squamous cell carcinoma, lung cancer and bladder cancer. This study was designed to measure the protein expression of FGF4 in malignant skin cancers. Methods: We examined 8 normal skin tissues and 24 malignant skin tumor tissues which were 8 malignant melanomas, 8 squamous cell carcinomas and 8 basal cell carcinomas. The specimens were analyzed for the protein expression of FGF4 using immunohistochemical staining. To evaluate the amount of expression of FGF4, the histochemical score (HSCORE) was used. Results: FGF4 was expressed more intensely in malignant melanoma, followed by SCC and BCC in immunohistochemistry. The average HSCORE was 0.01 for normal skin, 2.02 for malignant melanoma, 1.28 for squamous cell carcinoma, and 0.27 for basal cell carcinoma, respectively. The expression of FGF4 in malignant melanoma and squamous cell carcinoma was increased in comparison with normal tissues and basal cell cancer, and the difference was statistically significant (p<0.05). The difference between malignant melanoma and squamous cell carcinoma was not statistically significant. Conclusion: These findings provide evidences that the expression of FGF4 plays an important role in malignant melanoma and squamous cell carcinoma progressions. This article demonstrates expression of FGF4 in human skin malignant tumors, and suggests that FGF4 is more expressed in highly aggressive skin tumors.

Cardiomyogenic Potential of Human Adipose Tissue and Umbilical Cord Derived-Mesenchymal Like Stem Cells (사람의 지방 및 제대에서 유래된 유사중간엽 줄기세포로부터 심근세포로의 분화 유도)

  • Park, Se-Ah;Kang, Hyeon-Mi;Kim, Eun-Su;Kim, Jin-Young;Kim, Hae-Kwon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.4
    • /
    • pp.239-252
    • /
    • 2007
  • Objectives: In the present study, we examined the differentiation potential of human adipose-(HAD) and human umbilical cord-derived mesenchymal like stem cells (HUC) into cardiomyocytes. Methods: Cells were initially exposed to 5-azacytidine for 24h cells and then were cultivated in the presence or absence of activin A, TGF-$\beta$1, or Wnt inhibitor with various combinations of BMP and FGF. Assessment of cardiomyogenic differentiation was made upon the expression of cardiomyocyte-specific genes using RT-PCR. Results: HAD that cultivated in control medium for 4 weeks after 5-azacytidine expose showed new expression of TnT gene and increased expression of Cmlc1 and kv4.3 genes. However, HAD cultivated in the presence of combinations of BMP-4/FGF-4 (B4/F4) and BMP-4/FGF-8 (B4/F8) showed new expression of $\beta$-MHC gene and more increased expression of Cmlc1, TnT, TnI, Kv4.3 genes. Significantly enhanced expression of Cmlc1, TnT, and Kv4.3 genes were also observed compared to that cultivated in the control medium. Treatment of HUC with either 5-azacytidine or combinations of BMP and FGF did not affect the expression profile of these genes. However, when activin A or TGF-$\beta$1 was present in addition to the BMP-2/FGF-8 (B2/F8) after 5-azacytidine exposure, HUC exhibited new expression of $\beta$-MHC gene and increased expression of $\alpha$-CA, TnT and Kv4.3 genes. When Wnt inhibitor was present in addition to BMP and FGF, HUC showed new expression of Cmlc1 gene and increased expression of $\alpha$-CA, TnT, TnI and Kv4.3 genes. Conclusions: Based on these observations, it is suggested that HAD and HUC could differentiate into cardiomyocytes which might be used as therapeutic cells for the heart diseases.

THE EFFECT OF FIBROBLAST GROWTH FACTOR SIGNALING ON CARTILAGE FORMATION (FGF signaling이 연골 형성에 미치는 영향)

  • Park, Choong-Je;Lee, Sang-Won;Nam, Soon-Hyun;Kim, Young-Jin;Ryoo, Hyhn-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.643-653
    • /
    • 2003
  • Fibroblast growth factor (FGF) / FGF receptor (FGFR) mediated signaling is required for skeletogenesis in cluding intramembranous and endochondral ossifications Runx2 ($Cbfa1/Pebp2{\alpha}A/AML3$) is an essential transcription factor for osteoblast differentiation and bone formation. Murine calvaria and mandible are concurrently undergoing both intramembranous bone and cartilage formations in the early developmental stage. However the mechanism by which these cartilage formations are regulated remains unclear. To elucidate the effect of FGF signaling on development of cranial sutural cartilage and Meckel's cartilage and to understand the role of Runx2 in these process, we have done both in vivo and in vitro experiments. Alcian blue staining showed that cartilage formation in sagittal suture begins from embryonic stage 16 (E16), Meckel's cartilage formation in mandible from E12. We analyzed by in situ hybridization the characteristics of cartilage cells that type II collagen, not type X collagen, was expressed in sagittal sutural cartilage and Meckel's cartilage. In addition, Runx2 was not expressed in Meckel's cartilage as well as sagittal sutural cartilage, except specific expression pattern only surrounding both cartilages. FGF signaling pathway was further examined in vitro. Beads soaked in FGF2 placed on the sagittal suture and mandible inhibited both sutural and Meckel's cartilage formations. We next examined whether Runx2 gene lies in FGF siganling pathway during regulation of cartilage formation. Beads soaked in FGF2 on sagittal suture induced Runx2 gene expression. These results suggest that FGF signaling inhibits formations of sagittal sutural and Meckel's cartilages, also propose that FGF siganling is involved in the proliferation and differentiation of chondroblasts through regulating the transcription factor Runx2.

  • PDF

Transfection of Mesenchymal Stem Cells with the FGF-2 Gene Improves Their Survival Under Hypoxic Conditions

  • Song, Heesang;Kwon, Kihwan;Lim, Soyeon;Kang, Seok-Min;Ko, Young-Guk;Xu, ZhengZhe;Chung, Ji Hyung;Kim, Byung-Soo;Lee, Hakbae;Joung, Boyoung;Park, Sungha;Choi, Donghoon;Jang, Yangsoo;Chung, Nam-Sik;Yoo, Kyung-Jong;Hwang, Ki-Chul
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.402-407
    • /
    • 2005
  • Bone marrow mesenchymal stem cells (MSCs) have shown potential for cardiac repair following myocardial injury, but this approach is limited by their poor viability after transplantation. To reduce cell loss after transplantation, we introduced the fibroblast growth factor-2 (FGF-2) gene ex vivo before transplantation. The isolated MSCs produced colonies with a fibroblast-like morphology in 2 weeks; over 95% expressed CD71, and 28% expressed the cardiomyocyte-specific transcription factor, Nkx2.5, as well as ${\alpha}$-skeletal actin, Nkx2.5, and GATA4. In hypoxic culture, the FGF-2-transfected MSCs (FGF-2-MSCs) secreted increased levels of FGF-2 and displayed a threefold increase in viability, as well as increased expression of the anti-apoptotic gene, Bcl2, and reduced DNA laddering. They had functional adrenergic receptors, like cardiomyocytes, and exposure to norepinephrine led to phosphorylation of ERK1/2. Viable cells persisted 4 weeks after implantation of $5.0{\times}10^5$ FGF-2-MSCs into infarcted myocardia. Expression of cardiac troponin T (CTn T) and a voltage-gated $Ca^{2+}$ channel (CaV2.1) increased, and new blood vessels formed. These data suggest that genetic modification of MSCs before transplantation could be useful for treating myocardial infarction and end-stage cardiac failure.

Efficient Gene Delivery through the Human Transferrin Receptor of Fibroblast-like Synoviocytes Stimulated with bFGF: a Potential Target Receptor for Gene Transduction in Rheumatoid Arthritis

  • Kim, Hak-Jae;Joung, In-Sil;Nah, Seong-Su;Lee, Kyu-Hoon;KimKwon, Yun-Hee;Chung, Joo-Ho;Hong, Seung-Jae
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2007
  • Efficient gene delivery to specific tissues, such as inflammatory and cancerous tissues, is currently a major concern in disease treatment. The human transferrin receptor (hTR) has been detected in the synovium and fibroblast-like synoviocytes (FLS), which raises the possibility that expression of hTR is associated with the pathogenesis of rheumatoid arthritis (RA). To investigate whether the hTR is a useful target for gene transduction into the FLS of RA patients, recombinant adenoviruses with wildtype fiber (AdLac) and transferrin peptide-tagged fiber (Tf-AdLac) were used. The hTR expression level in FLS was notably increased by basic fibroblast growth factor (bFGF). Gene transduction to FLS was significantly higher by the hTR-targeted adenovirus than by the AdLac adenovirus, and treatment of the FLS with bFGF resulted in increased gene transduction by Tf-AdLac. Taken together, these data support Tf-AdLac as a new strategy for gene transduction in the treatment of RA patients.

Differential gene expression pattern in brains of acrylamide-administered mice

  • Han, Chang-Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.2
    • /
    • pp.99-104
    • /
    • 2012
  • The present study was performed to evaluate the relationship between the neurotoxicity of acrylamide and the differential gene expression pattern in mice. Both locomotor test and rota-rod test showed that the group treated with higher than 30 mg/kg/day of acrylamide caused impaired motor activity in mice. Based on cDNA microarray analysis of mouse brain, myelin basic protein gene, kinesin family member 5B gene, and fibroblast growth factor (FGF) 1 and its receptor genes were down-regulated by acrylamide. The genes are known to be essential for neurofilament synthesis, axonal transport, and neuroprotection, respectively. Interestingly, both FGF 1 and its receptor genes were down-regulated. Genes involved in nucleic acid binding such as AU RNA binding protein/enoyl-coA hydratase, translation initiation factor (TIF) 2 alpha kinase 4, activating transcription factor 2, and U2AF 1 related sequence 1 genes were down-regulated. More interesting finding was that genes of both catalytic and regulatory subunit of protein phosphatases which are important for signal transduction pathways were down-regulated. Here, we propose that acrylamide induces neurotoxicity by regulation of genes associated with neurofilament synthesis, axonal transport, neuro-protection, and signal transduction pathways.

Effect of Fucoidan on Angiogenesis and Gene Expression in Human Umbilical Vein Endothelial Cells (후코이단이 혈관 내피세포의 신생혈관 생성 효과 및 관련 유전자의 발현에 미치는 영향)

  • Park, Ho;Kim, Beom-Su
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.323-328
    • /
    • 2017
  • Angiogenesis is a process including members of the angiogenic factors. In particular, fibroblast growth factor 2 (FGF2) is considered the most potent angiogenic factor because it promotes cell proliferation and tube formation. A recent study reported that fucoidan derived from marine plant potentiated FGF-2 induced tube formation in human endothelial cells. On the other hand, the molecular mechanisms involved in the angiogenic activity of fucoidan and FGF2 are unknown. In this study, a fucoidan treatment promoted angiogenesis induced by FGF2. The effects of fucoidan on FGF2-induced angiogenesis were confirmed by a proliferation assay using a CellTiter96 Aqueous One solution after a treatment with fucoidan and FGF2. The tube formation and wound healing assay for the angiogenic activity were also confirmed. Reverse transcription PCR showed a change in the mRNA of vascular endothelial growth factor-A (VEGF-A), intercellular adhesion molecule-1 (ICAM-1), matrix metallopeptidase9 (MMP9), and the signal transducer and activator of transcription3 (STAT3). In summary, the Fucoidan/FGF2 treatment induced an increase in cell proliferation, improved the tube formation and wound healing activity, and altered the STAT3, VEGF-A, ICAM-1, and MMP9 mRNA expression levels. Further research will be needed to provide a scientific explanation in terms of cell-signaling and confirm the present findings.

Generation of Isthmic Organizer-Like Cells from Human Embryonic Stem Cells

  • Lee, Junwon;Choi, Sang-Hwi;Lee, Dongjin R;Kim, Dae-Sung;Kim, Dong-Wook
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.110-118
    • /
    • 2018
  • The objective of this study was to induce the production of isthmic organizer (IsO)-like cells capable of secreting fibroblast growth factor (FGF) 8 and WNT1 from human embryonic stem cells (ESCs). The precise modulation of canonical Wnt signaling was achieved in the presence of the small molecule CHIR99021 ($0.6{\mu}M$) during the neural induction of human ESCs, resulting in the differentiation of these cells into IsO-like cells having a midbrain-hindbrain border (MHB) fate in a manner that recapitulated their developmental course in vivo. Resultant cells showed upregulated expression levels of FGF8 and WNT1. The addition of exogenous FGF8 further increased WNT1 expression by 2.6 fold. Gene ontology following microarray analysis confirmed that IsO-like cells enriched the expression of MHB-related genes by 40 fold compared to control cells. Lysates and conditioned media of IsO-like cells contained functional FGF8 and WNT1 proteins that could induce MHB-related genes in differentiating ESCs. The method for generating functional IsO-like cells described in this study could be used to study human central nervous system development and congenital malformations of the midbrain and hindbrain.