• 제목/요약/키워드: FG material

검색결과 479건 처리시간 0.025초

Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation

  • Ebrahimi, Farzad;Ehyaei, Javad;Babaei, Ramin
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.245-261
    • /
    • 2016
  • Thermo-mechanical buckling problem of functionally graded (FG) nanoplates supported by Pasternak elastic foundation subjected to linearly/non-linearly varying loadings is analyzed via the nonlocal elasticity theory. Two opposite edges of the nanoplate are subjected to the linear and nonlinear varying normal stresses. Elastic properties of nanoplate change in spatial coordinate based on a power-law form. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanoplate. The equations of motion for an embedded FG nanoplate are derived by using Hamilton principle and Eringen's nonlocal elasticity theory. Navier's method is presented to explore the influences of elastic foundation parameters, various thermal environments, small scale parameter, material composition and the plate geometrical parameters on buckling characteristics of the FG nanoplate. According to the numerical results, it is revealed that the proposed modeling can provide accurate results of the FG nanoplates as compared some cases in the literature. Numerical examples show that the buckling characteristics of the FG nanoplate are related to the material composition, temperature distribution, elastic foundation parameters, nonlocality effects and the different loading conditions.

Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM

  • Sadoughifar, Amirmahmoud;Farhatnia, Fatemeh;Izadinia, Mohsen;Talaeitaba, Sayed Behzad
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.307-318
    • /
    • 2019
  • This is the first attempt to consider the nonlinear bending analysis of porous functionally graded (FG) thick annular and circular nanoplates resting on Kerr foundation. The size effects are captured based on modified couple stress theory (MCST). The material properties of the porous FG nanostructure are assumed to vary smoothly through the thickness according to a power law distribution of the volume fraction of the constituent materials. The elastic medium is modeled by Kerr elastic foundation which consists of two spring layers and one shear layer. The governing equations are extracted based on Hamilton's principle and two variables refined plate theory. Utilizing generalized differential quadrature method (GDQM), the nonlinear static behavior of the nanostructure is obtained under different boundary conditions. The effects of various parameters such as material length scale parameter, boundary conditions, and geometrical parameters of the nanoplate, elastic medium constants, porosity and FG index are shown on the nonlinear deflection of the annular and circular nanoplates. The results indicate that with increasing the material length scale parameter, the nonlinear deflection is decreased. In addition, the dimensionless nonlinear deflection of the porous annular nanoplate is diminished with the increase of porosity parameter. It is hoped that the present work may provide a benchmark in the study of nonlinear static behavior of porous nanoplates.

Nonlocal vibration analysis of FG nano beams with different boundary conditions

  • Ehyaei, Javad;Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • 제4권2호
    • /
    • pp.85-111
    • /
    • 2016
  • In this paper, the classical and non-classical boundary conditions effect on free vibration characteristics of functionally graded (FG) size-dependent nanobeams are investigated by presenting a semi analytical differential transform method (DTM) for the first time. Three kinds of mathematical models, namely; power law (P-FGM), sigmoid (S-FGM) and Mori-Tanaka (MT-FGM) distribution are considered to describe the material properties in the thickness direction. The nonlocal Eringen theory takes into account the effect of small size, which enables the present model to become effective in the analysis and design of nanosensors and nanoactuators. Governing equations are derived through Hamilton's principle and they are solved applying semi analytical differential transform method. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as small scale effects, spring constant factors, various material compositions and mode number on the normalized natural frequencies of the FG nanobeams in detail. It is explicitly shown that the vibration of FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory

  • Hadji, Lazreg;Avcar, Mehmet
    • Advances in nano research
    • /
    • 제10권3호
    • /
    • pp.281-293
    • /
    • 2021
  • This paper presents a new nonlocal Hyperbolic Shear Deformation Beam Theory (HSDBT) for the free vibration of porous Functionally Graded (FG) nanobeams. A new displacement field containing integrals is proposed which involves only three variables. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect and its account for shear deformation by a hyperbolic variation of all displacements through the thickness without using the shear correction factor. It has been observed that during the manufacture of Functionally Graded Materials (FGMs), micro-voids and porosities can occur inside the material. Thus, in this work, the investigation of the free vibration analysis of FG beams taking into account the influence of these imperfections is established. Four different porosity types are considered for FG nanobeam. Material characteristics of the FG beam are supposed to vary continuously within thickness direction according to a power-law scheme which is modified to approximate material characteristics for considering the influence of porosities. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanobeam are derived using Hamilton's principle. The effects of nonlocal parameter, aspect ratio, and the porosity types on the dynamic responses of the nanobeam are discussed.

Influence of material composition on buckling response of FG plates using a simple plate integral model

  • Bakhti, Karima;Sekkal, Mohamed;Adda Bedia, E.A.;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.447-457
    • /
    • 2020
  • In this study, a simple two-dimensional shear deformation model is employed for buckling analysis of functionally graded (FG) plates. The proposed theory has a kinematic with integral terms which considers the influence of shear deformation without using "shear correction factors". The impact of varying material properties and volume fraction of the constituent on buckling response of the FG plate is examined and discussed. The benefit of this theory over other contributions is that a number of variables is reduced. The basic equations that consider the influence of transverse shear stresses are derived from the principle of virtual displacements. The analytical solutions are obtained utilizing the "Navier method". The accuracy of the proposed theory is proved by comparisons with the different solutions found in the literature.

Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT

  • Boutaleb, Sabrina;Benrahou, Kouider Halim;Bakora, Ahmed;Algarni, Ali;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Advances in nano research
    • /
    • 제7권3호
    • /
    • pp.191-208
    • /
    • 2019
  • In the present work the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosize FG plate. In HSDT a cubic function is employed in terms of thickness coordinate to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton's principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature and a good agreement is observed. Finally, the influence of the various parameters such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness to length ratio on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.

Rotating effects on hygro-mechanical vibration analysis of FG beams based on Euler-Bernoulli beam theory

  • Ehyaei, Javad;Farazmandnia, Navid;Jafari, Ali
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.471-480
    • /
    • 2017
  • This paper investigates free vibration characteristics of a rotating functionally graded (FG) beam in hygro environments. In the present study, material properties of the FG beam vary continuously through thickness direction according to the power-law which approximates material properties of FG beam. The governing differential equations of motion are derived based on Euler-Bernoulli beam theory and using the Hamilton's principle which solved utilizing a semi-analytical technique called the Differential Transform Method (DTM). In order to verify the competency and accuracy of the current analysis, a comparative study with previous researches are performed and good agreement is observed. Influences of Several important parameters such as power-law exponent, hygro environment, rotational speed and slenderness ratio on natural frequencies are investigated and discussed in detail. It is concluded that these effects play significant role on dynamic behavior of rotating FG beam in the hygro environments. Numerical results are tabulated in several tables and figures that can be serving as benchmarks for future analyses of rotating FG beams in the hygro environments.

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory

  • Ebrahimi, Farzad;Daman, Mohsen;Mahesh, Vinyas
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.249-263
    • /
    • 2019
  • In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.199-210
    • /
    • 2021
  • The aim of this paper was to examine the continuous and discontinuous contact problems between the functionally graded (FG) layer pressed with a uniformly distributed load and homogeneous half plane using an analytical method and FEM. The FG layer is made of non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layer-half plane interface is frictionless, and only the normal tractions can be transmitted along the contacted regions. The body force of the FG layer is considered in the study. The FG layer was positioned on the homogeneous half plane without any bonds. Thus, if the external load was smaller than a certain critical value, the contact between the FG layer and half plane would be continuous. However, when the external load exceeded the critical value, there was a separation between the FG layer and half plane on the finite region, as discontinuous contact. Therefore, there have been some steps taken in this study. Firstly, an analytical solution for continuous and discontinuous contact cases of the problem has been realized using the theory of elasticity and Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using ANSYS package program based on FEM. Numerical results for initial separation distance and contact stress distributions between the FG layer and homogeneous half plane for continuous contact case; the start and end points of separation and contact stress distributions between the FG layer and homogeneous half plane for discontinuous contact case were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio and load factor for both methods. The results obtained using FEM were compared with the results found using analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.

Multiscale bending and free vibration analyses of functionally graded graphene platelet/ fiber composite beams

  • Garg, A.;Mukhopadhyay, T.;Chalak, H.D.;Belarbi, M.O.;Li, L.;Sahoo, R.
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.707-720
    • /
    • 2022
  • In the present work, bending and free vibration analyses of multilayered functionally graded (FG) graphene platelet (GPL) and fiber-reinforced hybrid composite beams are carried out using the parabolic function based shear deformation theory. Parabolic variation of transverse shear stress across the thickness of beam and transverse shear stress-free conditions at top and bottom surfaces of the beam are considered, and the proposed formulation incorporates a transverse displacement field. The present theory works only with four unknowns and is computationally efficient. Hamilton's principle has been employed for deriving the governing equations. Analytical solutions are obtained for both the bending and free vibration problems in the present work considering different variations of GPLs and fibers distribution, namely, FG-X, FG-U, FG-Λ, and FG-O for beams having simply-supported boundary condition. First, the matrix is assumed to be strengthened using GPLs, and then the fibers are embedded. Multiscale modeling for material properties of functionally graded graphene platelet/fiber hybrid composites (FG-GPL/FHRC) is performed using Halpin-Tsai micromechanical model. The study reveals that the distributions of GPLs and fibers have significant impacts on the stresses, deflections, and natural frequencies of the beam. The number of layers and shape factors widely affect the behavior of FG-GPL-FHRC beams. The multilayered FG-GPL-FHRC beams turn out to be a good approximation to the FG beams without exhibiting the stress-channeling effects.