• 제목/요약/키워드: FG beams

검색결과 139건 처리시간 0.024초

Investigation of the mechanical behavior of functionally graded sandwich thick beams

  • Mouaici, Fethi;Bouadi, Abed;Bendaida, Mohamed;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.721-740
    • /
    • 2022
  • In this paper, an accurate kinematic model has been developed to study the mechanical response of functionally graded (FG) sandwich beams, mainly covering the bending, buckling and free vibration problems. The studied structure with homogeneous hardcore and softcore is considered to be simply supported in the edges. The present model uses a new refined shear deformation beam theory (RSDBT) in which the displacement field is improved over the other existing high-order shear deformation beam theories (HSDBTs). The present model provides good accuracy and considers a nonlinear transverse shear deformation shape function, since it is constructed with only two unknown variables as the Euler-Bernoulli beam theory but complies with the shear stress-free boundary conditions on the upper and lower surfaces of the beam without employing shear correction factors. The sandwich beams are composed of two FG skins and a homogeneous core wherein the material properties of the skins are assumed to vary gradually and continuously in the thickness direction according to the power-law distribution of volume fraction of the constituents. The governing equations are drawn by implementing Hamilton's principle and solved by means of the Navier's technique. Numerical computations in the non-dimensional terms of transverse displacement, stresses, critical buckling load and natural frequencies obtained by using the proposed model are compared with those predicted by other beam theories to confirm the performance of the proposed theory and to verify the accuracy of the kinematic model.

Vibration response of rotating carbon nanotube reinforced composites in thermal environment

  • Ozge Ozdemir;Ismail Esen;Huseyin Ural
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.1-17
    • /
    • 2023
  • This paper deals with the free vibration behavior of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. The temperature-dependent beam material is assumed to be a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix and five different functionally graded (FG) distributions of CNTs are considered according to the variation along the thickness, namely the UD-uniform, FG-O, FG-V, FG-Λ and FG-X distributions where FG-V and FG-Λ are unsymmetrical patterns. Considering the Timoshenko beam theory (TBT), a new finite element formulation of functionally graded carbon nanotube reinforced composite (FGCNTRC) beam is created for the first time. And the effects of several essential parameters including rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force and moments due to temperature variation are considered in the formulation. By implementing different boundary conditions, some new results of both symmetric and non-symmetrical distribution patterns are presented in tables and figures to be used as benchmark for further validation. In addition, as an alternative advanced composite application for rotating systems exposed to thermal load, the positive effects of CNT addition in improving the dynamic performance of the system have been observed and the results are presented in several tables and figures.

Finite element bending and buckling analysis of functionally graded carbon nanotubes-reinforced composite beam under arbitrary boundary conditions

  • Belarbi, Mohamed-Ouejdi;Salami, Sattar Jedari;Garg, Aman;Hirane, Hicham;Amine, Daikh Ahmed;Houari, Mohammed Sid Ahmed
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.451-471
    • /
    • 2022
  • In the present paper, the static bending and buckling responses of functionally graded carbon nanotubes-reinforced composite (FG-CNTRC) beam under various boundary conditions are investigated within the framework of higher shear deformation theory. The significant feature of the proposed theory is that it provides an accurate parabolic distribution of transverse shear stress through the thickness satisfying the traction-free boundary conditions needless of any shear correction factor. Uniform (UD) and four graded distributions of CNTs which are FG-O, FG-X, FG- and FG-V are selected here for the analysis. The effective material properties of FG-CNTRC beams are estimated according to the rule of mixture. To model the FG-CNTRC beam realistically, an efficient Hermite-Lagrangian finite element formulation is successfully developed. The accuracy and efficiency of the present model are demonstrated by comparison with published benchmark results. Moreover, comprehensive numerical results are presented and discussed in detail to investigate the effects of CNTs volume fraction, distribution patterns of CNTs, boundary conditions, and length-to-thickness ratio on the bending and buckling responses of FG-CNTRC beam. Several new referential results are also reported for the first time which will serve as a benchmark for future studies in a similar direction. It is concluded that the FG-X-CNTRC beam is the strongest beam that carries the lowest central deflection and is followed by the UD, V, Λ, and FG-O-CNTRC beam. Besides, the critical buckling load belonging to the FG-X-CNTRC beam is the highest, followed by UD and FG-O.

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM

  • Mohammadimehr, M.;Shahedi, S.
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.1-36
    • /
    • 2016
  • In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich beams. The connections of every sandwich beam with its surrounding medium and also between them have been carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural frequencies tend to decrease for all amounts of the Winkler spring modulus.

Transient response of 2D functionally graded beam structure

  • Eltaher, Mohamed A.;Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.357-367
    • /
    • 2020
  • The objective of this article is investigation of dynamic response of thick multilayer functionally graded (FG) beam under generalized dynamic forces. The plane stress problem is exploited to describe the constitutive equation of thick FG beam to get realistic and accurate response. Applied dynamic forces are assumed to be sinusoidal harmonic, sinusoidal pulse or triangle in time domain and point load. Equations of motion of deep FG beam are derived based on the Hamilton principle from kinematic relations and constitutive equations of plane stress problem. The numerical finite element procedure is adopted to discretize the space domain of structure and transform partial differential equations of motion to ordinary differential equations in time domain. Numerical time integration method is used to solve the system of equations in time domain and find the time responses. Numerical parametric studies are performed to illustrate effects of force type, graduation parameter, geometrical and stacking sequence of layers on the time response of deep multilayer FG beams.

Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections

  • Ahmed, Ridha A.;Fenjan, Raad M.;Faleh, Nadhim M.
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.175-180
    • /
    • 2019
  • This research is concerned with post-buckling investigation of nano-scaled beams constructed from porous functionally graded (FG) materials taking into account geometrical imperfection shape. Hence, two types of nanobeams which are perfect and imperfect have been studied. Porous FG materials are classified based on even or uneven porosity distributions. A higher order nonlinear refined beam theory is used in the present research. Both perfect and imperfect nanobeams are formulated based on this refined theory. A detailed study is provided to understand the effects of geometric imperfection, pore distribution, material distribution and small scale effects on buckling of FG nanobeams.

Non-linear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.105-120
    • /
    • 2018
  • In this paper, the nonlinear free and forced vibration responses of sandwich nano-beams with three various functionally graded (FG) patterns of reinforced carbon nanotubes (CNTs) face-sheets are investigated. The sandwich nano-beam is resting on nonlinear Visco-elastic foundation and is subjected to thermal and electrical loads. The nonlinear governing equations of motion are derived for an Euler-Bernoulli beam based on Hamilton principle and von Karman nonlinear relation. To analyze nonlinear vibration, Galerkin's decomposition technique is employed to convert the governing partial differential equation (PDE) to a nonlinear ordinary differential equation (ODE). Furthermore, the Multiple Times Scale (MTS) method is employed to find approximate solution for the nonlinear time, frequency and forced responses of the sandwich nano-beam. Comparison between results of this paper and previous published paper shows that our numerical results are in good agreement with literature. In addition, the nonlinear frequency, force response and nonlinear damping time response is carefully studied. The influences of important parameters such as nonlocal parameter, volume fraction of the CNTs, different patterns of CNTs, length scale parameter, Visco-Pasternak foundation parameter, applied voltage, longitudinal magnetic field and temperature change are investigated on the various responses. One can conclude that frequency of FG-AV pattern is greater than other used patterns.

Finite element modelling for the static bending response of rotating FG-GPLRC beams with geometrical imperfections in thermal mediums

  • Bui Manh Cuong;Abdelouahed Tounsi;Do Van Thom;Nguyen Thi Hai Van;Phung Van Minh
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.91-102
    • /
    • 2024
  • Beam-shaped components commonly rotate along a fixed axis when massive mechanical structures like rotors, jet engine blades, motor turbines, and rotating railway crossings perform their functions. For these structures to be useful in real life, their mechanical behavior is essential. Therefore, this is the first article to use the modified shear deformation theory type hyperbolic sine functions theory and the FEM to study the static bending response of rotating functionally graded GPL-reinforced composite (FG-GPLRC) beams with initial geometrical deficiencies in thermal media. Graphene platelets (GPLs) in three different configurations are woven into the beam's composition to increase its strength. By comparing the numerical results with those of previously published studies, we can assess the robustness of the theory and mechanical model employed in this study. Parameter studies are performed to determine the effect of various geometric and physical variables, such as rotation speed and temperature, on the bending reactions of structures.

Dynamic modeling of nonlocal compositionally graded temperature-dependent beams

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Advances in aircraft and spacecraft science
    • /
    • 제5권1호
    • /
    • pp.141-164
    • /
    • 2018
  • In this paper, the thermal effect on buckling and free vibration characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as thermal effect, material distribution profile, small scale effects, aspect ratio and mode number on the critical buckling temperature and normalized natural frequencies of the temperature-dependent FG nanobeams in detail. It is explicitly shown that the thermal buckling and vibration behaviour of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • 제6권4호
    • /
    • pp.377-397
    • /
    • 2018
  • In the present investigation, thermal buckling and free vibration characteristics of functionally graded (FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model and the material properties are assumed to be temperature-dependent. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on thermal stability and vibration characteristics of FG nanobeams.