• Title/Summary/Keyword: FFT signal processing

Search Result 203, Processing Time 0.02 seconds

Development of A Simulation Technique for Arc-Rail Based GB-SAR System (원형레일 기반의 지상 SAR 시스템 시뮬레이션 기법 개발)

  • Kim, Kwang-Eun;Cho, Seong-Jun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.107-112
    • /
    • 2009
  • A technique for the simulation of various kinds of ground based SAR system was developed. This is an ancillary research for the development of an ArcSAR system which uses an arc-rail as a platform for the antenna movement instead of linear rail. The results of applying conventional Deramp FFT based SAR focusing algorithm to the simulated raw signal of linear rail type ground based SAR for the point targets showed that the developed simulation technique generated accurate GB-SAR raw signal. The developed technique is now being used for the development and verification of SAR focusing algorithm for the arc-rail type ground based SAR. The simulation technique is also expected to be very useful for the purpose oriented system design and operation planning of ground based SAR technique.

Study on Application of Spatial Signal Processing Techniques to Wavenumber Analysis of Vibration Data on a Cylindrical Shell (원통셸의 진동 데이터에 대한 파수해석을 위한 공간신호처리 방법의 응용 연구)

  • Kil, Hyun-Gwon;Lee, Chan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.863-875
    • /
    • 2010
  • The vibration of a cylindrical shell is generated due to elastic waves propagating on the shell. Those elastic waves include propagating waves such as flexural, longitudinal and shear waves. Those also include non-propagating decaying waves, i.e. evanescent waves. In order to separate contributions of each type of waves to the data for the vibration of the cylindrical shell, spatial signal processing techniques for wavenumber analysis are investigated in this paper. Those techniques include Fast Fourier transform(FFT) algorithm, Extended Prony method and Overdetermined Modified Extended Prony method(OMEP). Those techniques have been applied to identify the waves from simulated vibration signals with various signal-to-noise ratios. Futhermore, the experimental data for in-plane vibration of the cylindrical shell has been processed with those techniques to identify propagating waves(longitudinal, shear and flexural waves) and evanescent waves.

Design of FMCW radar waveform for flow measurement (유량 측정을 위한 FMCW 레이다 파형 설계)

  • Lee, Changki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • A commercial flow measurement radar sensor estimates a quantity of flowed water using surface flow rate. In this way, the amount of water flowing per unit time cannot be measured accurately because of using an estimation result and it can't response environmental changes. For more accurate flow measurements we need width of waterway, water level and distance that water moved per unit time. Commonly two sensors are used to measure water level and flow rate. In this paper, we propose a method to simultaneously measure the water level and surface flow velocity using a single FMCW radar sensor and design the transmission waveform. In order to verify the waveform design, received signal is modelled based on transmission waveform. In addition, we consider phenomenons and problems that may occur in signal processing.

DCT/DFT Hybrid Architecture Algorithm Via Recursive Factorization (순환 행렬 분해에 의한 DCT/DFT 하이브리드 구조 알고리듬)

  • Park, Dae-Chul
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.106-112
    • /
    • 2007
  • This paper proposes a hybrid architecture algorithm for fast computation of DCT and DFT via recursive factorization. Recursive factorization of DCT-II and DFT transform matrix leads to a similar architectural structure so that common architectural base may be used by simply adding a switching device. Linking between two transforms was derived based on matrix recursion formula. Hybrid acrchitectural design for DCT and DFT matrix decomposition were derived using the generation matrix and the trigonometric identities and relations. Data flow diagram for high-speed architecture of Cooley-Tukey type was drawn to accommodate DCT/DFT hybrid architecture. From this data flow diagram computational complexity is comparable to that of the fast DCT algorithms for moderate size of N. Further investigation is needed for multi-mode operation use of FFT architecture in other orthogonal transform computation.

  • PDF

Joint FrFT-FFT basis compressed sensing and adaptive iterative optimization for countering suppressive jamming

  • Zhao, Yang;Shang, Chaoxuan;Han, Zhuangzhi;Yin, Yuanwei;Han, Ning;Xie, Hui
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.316-325
    • /
    • 2019
  • Accurate suppressive jamming is a prominent problem faced by radar equipment. It is difficult to solve signal detection problems for extremely low signal to noise ratios using traditional signal processing methods. In this study, a joint sensing dictionary based compressed sensing and adaptive iterative optimization algorithm is proposed to counter suppressive jamming in information domain. Prior information of the linear frequency modulation (LFM) and suppressive jamming signals are fully used by constructing a joint sensing dictionary. The jamming sensing dictionary is further adaptively optimized to perfectly match actual jamming signals. Finally, through the precise reconstruction of the jamming signal, high detection precision of the original LFM signal is realized. The construction of sensing dictionary adopts the Pei type fast fractional Fourier decomposition method, which serves as an efficient basis for the LFM signal. The proposed adaptive iterative optimization algorithm can solve grid mismatch problems brought on by undetermined signals and quickly achieve higher detection precision. The simulation results clearly show the effectiveness of the method.

Implementation of Adaptive Feedback Cancellation Algorithm for Multichannel Digital Hearing Aid (다채널 디지털 보청기에 적용 가능한 Adaptive Feedback Cancellation 알고리즘 구현)

  • Jeon, Shin-Hyuk;Ji, You-Na;Park, Young-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.102-110
    • /
    • 2017
  • In this paper, we have implemented an real-time adaptive feedback cancellation(AFC) algorithm that can be applied to multi-channel digital hearing aid. Multichannel digital hearing aid typically use the FFT filterbank based Wide Dynamic Range Compression(WDRC) algorithm to compensate for hearing loss. The implemented real-time acoustic feedback cancellation algorithm has one integrated structure using the same FFT filter bank with WDRC, which can be beneficial in terms of computation affecting the hearing aid battery life. In addition, when the AFC fails to operate due to nonlinear input and output, the reduction gain is applied to improve robustness in practical environment. The implemented algorithm can be further improved by adding various signal processing algorithm such as speech enhancement.

Development of Parallel Signal Processing Algorithm for FMCW LiDAR based on FPGA (FPGA 고속병렬처리 구조의 FMCW LiDAR 신호처리 알고리즘 개발)

  • Jong-Heon Lee;Ji-Eun Choi;Jong-Pil La
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.335-343
    • /
    • 2024
  • Real-time target signal processing techniques for FMCW LiDAR are described in this paper. FMCW LiDAR is gaining attention as the next-generation LiDAR for self-driving cars because of its detection robustness even in adverse environmental conditions such as rain, snow and fog etc. in addition to its long range measurement capability. The hardware architecture which is required for high-speed data acquisition, data transfer, and parallel signal processing for frequency-domain signal processing is described in this article. Fourier transformation of the acquired time-domain signal is implemented on FPGA in real time. The paper also details the C-FAR algorithm for ensuring robust target detection from the transformed target spectrum. This paper elaborates on enhancing frequency measurement resolution from the target spectrum and converting them into range and velocity data. The 3D image was generated and displayed using the 2D scanner position and target distance data. Real-time target signal processing and high-resolution image acquisition capability of FMCW LiDAR by using the proposed parallel signal processing algorithms based on FPGA architecture are verified in this paper.

A Study on the Correlation Results for Fringe Rotation and Delay Tracking of the VCS (VCS의 지연추적과 프린지 회전에 대한 상관결과 고찰)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Oh, ChungSik;Jung, Jin-Seung;Chung, Dong-Kyu;Oyama, Tomoaki;Kawaguchi, Noriyuki;Kobayashi, Hideyuki;Kono, Yusuke;Ozeki, Kensuke;Onuki, Hirohumi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.220-232
    • /
    • 2012
  • In this paper, we investigate the correlation result due to the problems of delay tracking and fringe rotation module in the VCS(VLBI Correlation Subsystem). The VCS, FX-type correlator, adopts the delay tracking and fringe rotation module in order to compensate the delay change and fringe phase of wave signal from the radio source by Doppler's effect. The phase of observed data is also compensated by means of delay tracking and fringe rotation in the correlator, but we confirmed that the phase is unstable by applying long integration period of AIPS(Astronomical Image Processing System) rather than correlator. And the delay value of observed data has the errors of several tens nanoseconds than normal case at the analysis of correlation result. In addition, we found that the phase of correlation results is not connected as the unit of FFT-segment because the initial fringe phase at the fringe rotation module is not correctly determined. In this paper, in order to solve these problems, the original direction of 90 degree phase jump is reversely modified when the bit-shift occurred at the delay tracking. And the initial fringe phase at the fringe rotation module is correctly modified by using the initial phase of observed data. In addition, the parameter calculation module was abnormally operated as designed in the fringe rotation. So, the logical program by the VCS is modified so as to calculate the parameters correctly. Through the experiments of correlation processing over the above problems, the modified proposal algorithm is adequately corrected to the data analysis results, so that the experimental results make it clear for us to operate the developed VCS hardware correlator normally.

Performance Test Results of GPS/Galileo Combined Receiver for GNSS Sensor Station (GNSS 신호감시국용 GPS/갈릴레오 복합수신기 성능시험결과)

  • Sin, Cheon-Sig;Lee, Sang-Uk;Yoon, Dong-Weon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.2
    • /
    • pp.10-15
    • /
    • 2011
  • 본 논문은 위성항법신호감시국용 GPS/갈릴레오 복합수신기에 대한 구현 및 성능 시험결과를 기술한 논문으로 복합수신기는 단일 플랫폼에서 갈릴레오 E1, E5a 신호와 GPS L1, L2C, L5 신호를 수신처리 할 수 있으며, GPS신호와 갈릴레오 E1 신호를 복합적으로 처리함으로써, 위치정확도가 향상됨을 보였다. 각 신호에 대한 신호획득을 신속하게 하기 위해, 모든 신호에 대해 정합필터와 FFT 방식이 결합된 방식을 적용하였고, 신호추적과정에서는 다수의 추적루프를 적용하였으며 본 논문에서는 주요 신호에 대한 신호획득 및 추적과정의 시험결과를 보였다. 또한 기존에 발표된 논문과의 차별화 항목으로, 항법신호의 수신레벨이 낮아 CW 형태와 같은 간섭신호에도 영향을 받는바, 이에 대한 개발된 항재밍 모듈에 대한 시험결과도 제시하였으며, 성능측면에서의 비교를 위해 상용수신기와 개발된 수신기와의 성능 비교 결과도 함께 제시하였다.

Target Ranging Method by Using Near Field Shading Function (Near Field Shading 함수를 이용한 표적 거리 추정 기법)

  • 최주평;이원철
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.199-202
    • /
    • 2002
  • This paper introduces the near field shading beamformer using widely known Chebyshev and Hanning window in the field of digital signal processing. The proposed shading beamformer improves the estimation of range as well as azimuth angle of targe residing in near field. A series of sensor weighting values are calculated from the FFT operation of given shading functions in time domain. This paper verifies the performance of the focused beamformer having the proposed shading sensor weights which are used to detect the range of target. Throughout computer simulations this paper exploits the performance improvement of the proposed shading beamformer as varying the frequency band of the received radiated signal along the non-uniform array.

  • PDF