• Title/Summary/Keyword: FFT analysis

Search Result 707, Processing Time 0.027 seconds

Pattern of partial discharge for stator windings fault of high voltage motor (고압전동기 고정자권선 결함 부분방전패턴)

  • Park, Jae-Jun;Kim Hee-Dong
    • The Journal of Information Technology
    • /
    • v.7 no.1
    • /
    • pp.155-161
    • /
    • 2004
  • During normal machine operation, partial discharge(PD) measurements were performed with turbine generator analyzer(TGA) in imitation stator winding of high voltage motors. The motor was energized to 4.47kV, 6.67, respectively. Applied voltage to Imitation winding was used two voltage level, 4.47[kV] and 6.67[kV]. Motors having imitation stator winding were installed with 80pF capacitive couplers at the terminal box. Case of PD Pattern regarding applied voltage phase angel, the PD patterns were displayed two dimensional and three dimensional. TGA summarizes each plot with two quantities such as the normalized quantity number(NQN) and the peak PD magnitude(Qm). As the result, we could discrimidate using TGA the difference of internal and surface discharge for imitation stator winding. We have used the other technique, in order to feature extraction of faulty signals on stator winding, Daubechies Discrete wavelet transform and Harmonics analysis(FFT) about faulty signals.

  • PDF

Determination of Optimal Accelerometer Locations for Bridges using Frequency-Domain Hankel Matrix (주파수영역 Hankel matrix를 사용한 교량의 가속도센서 최적위치 결정)

  • Kang, Sungheon;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.27-34
    • /
    • 2016
  • A new algorithm for determining optimal accelerometer locations is proposed by using a frequency-domain Hankel matrix which is much simpler to construct than a time-domain Hankel matrix. The algorithm was examined through simulation studies by comparing the outcomes with those from other available methods. To compare and analyze the results from different methods, a dynamic analysis was carried out under seismic excitation and acceleration data were obtained at the selected optimal sensor locations. Vibrational amplitudes at the selected sensor locations were determined and those of all the other degrees of freedom were determined by using a spline function. MAC index of each method was calculated and compared to look at which method could determine more effective locations of accelerometers. The proposed frequency-domain Hankel matrix could determine reasonable selection of accelerometer locations compared with the others.

A Study on the Reversible SCR Servo Amplifier (정역전이 가능한 SCR 서보증폭기에 관한 연구)

  • Ahn, B. W.;Park, S. K.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.190-198
    • /
    • 1995
  • Many industrial servo amplifiers employ power transister as output device. Thyristor converters are not adopted to drive servo motor, although thyristor is superior to power TR in power rating, noise immunity, price, and size. The reason is, thyristor has no ability of self turn - off. Here in this paper line commutation, in which thyristor is turned off naturally since cathode voltage is higher than anode as time goes by, is employed to turn on thyristor with a delicate sequence. We developed thyristor servo amplifier which does not cause any damage on thyristor because it is designed to prevent triggering the two SCRs in the same arm simultaneously. And it was made clearly how to trigger SCR without any power line shorting and also harmonic analysis is carried out with the aid of FFT analyzer and proved that it can be used even severe reactive load. The designed circuit operated as a good DC amplifier in conventinal servomotor and the results can be use as a position control system application.

  • PDF

Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow

  • Qiu, Chengcheng;Pan, Guang;Huang, Qiaogao;Shi, Yao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.102-115
    • /
    • 2020
  • In this study, the SST k - ω turbulence model and the sliding mesh technology based on RANS method have been adopted to simulate the exciting force and hydrodynamic of a pump-jet propulsor in different oblique inflow angle (0°, 10°, 20°, 30°) and different advance ratio (J = 0.95, J = 1.18, J = 1.58).The fully structured grid and full channel model have been adopted to improved computational accuracy. The classical skewed marine propeller E779A with different advance ratio was carried out to verify the accuracy of the numerical simulation method. The grid independence was verified. The time-domain data of pump-jet propulsor exciting force including bearing force and fluctuating pressure in different working conditions was monitored, and then which was converted to frequency domain data by fast Fourier transform (FFT). The variation laws of bearing force and fluctuating pressure in different advance ratio and different oblique flow angle has been presented. The influence of the peak of pulsation pressure in different oblique flow angle and different advance ratio has been presented. The results show that the exciting force increases with the increase of the advance ratio, the closer which is to the rotor domain and the closer to the blades tip, the greater the variation of the pulsating pressure. At the same time, the exciting force decrease with the oblique flow angle increases. And the vertical and transverse forces will change more obviously, which is the main cause of the exciting force. In addition, the pressure distribution and the velocity distribution of rotor blades tip in different oblique flow angles has been investigated.

Machine Learning Model for Predicting the Residual Useful Lifetime of the CNC Milling Insert (공작기계의 절삭용 인서트의 잔여 유효 수명 예측 모형)

  • Won-Gun Choi;Heungseob Kim;Bong Jin Ko
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.111-118
    • /
    • 2023
  • For the implementation of a smart factory, it is necessary to collect data by connecting various sensors and devices in the manufacturing environment and to diagnose or predict failures in production facilities through data analysis. In this paper, to predict the residual useful lifetime of milling insert used for machining products in CNC machine, weight k-NN algorithm, Decision Tree, SVR, XGBoost, Random forest, 1D-CNN, and frequency spectrum based on vibration signal are investigated. As the results of the paper, the frequency spectrum does not provide a reliable criterion for an accurate prediction of the residual useful lifetime of an insert. And the weighted k-nearest neighbor algorithm performed best with an MAE of 0.0013, MSE of 0.004, and RMSE of 0.0192. This is an error of 0.001 seconds of the remaining useful lifetime of the insert predicted by the weighted-nearest neighbor algorithm, and it is considered to be a level that can be applied to actual industrial sites.

Performance analysis of joint equalizer and phase-locked loop in underwater acoustic communications (수중 음향통신에서 위상고정루프와 결합된 등화기의 성능분석)

  • Kim, Seunghwan;Kim, In Soo;Do, Dae-Won;Ko, Seokjun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.166-173
    • /
    • 2022
  • In this paper, the performance of joint equalizer and phase-locked loop in underwater communications is analyzed. In the channel where the Doppler frequency exists, it is difficult to recover the transmitted data only by the equalizer. To compensate for the Doppler frequency, the phase-locked loop is used. For removing the time-varying multipath and the Doppler frequency simultaneously, the equalizer and the phase-locked loop operate jointly. Also, if the initial Doppler frequency error obtained by Fast Fourier Transform (FFT) is compensated, the convergence speed of the joint equalizer and phase-locked loop can be improved. To verify the performance, lake and sea experiments were conducted. As a result, it was showed that the joint equalizer and phase-locked loop converges sufficiently in the preamble (known data) period regardless of whether the Doppler frequency is compensated or not. And, the bit error in random data period is not occurred. However, we can increase the convergence speed of the equalizer more than twice through the compensation of Doppler frequency.

Study on Wave Generation Technique and Estimation of Directional Wave Spectra for Multi-Directional Irregular Waves (다방향 불규칙파에 대한 조파 기법 및 방향 스펙트럼 추정 연구)

  • Seunghoon Oh;Sungjun Jung;Sung-Chul Hwang;Eun-Soo Kim;Hong-Gun Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.266-277
    • /
    • 2023
  • In this study, fundamental research is conducted for the generation technique and analysis of multi-directional irregular waves in the Deep Ocean Engineering Basin (DOEB). A three-dimensional boundary element method-based numerical tank is implemented to perform wave generation simulations, and directional spectrum estimation is carried out using the results of simulations. The wave generation technique of the Snake type wave maker, generating multi-directional irregular waves, is implemented using the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) algorithms. The wave generation technique is validated by comparing the wave spectrum from simulations and experiments. A Maximum Likelihood Method (MLM) based estimation code is developed for estimating the directional wave spectra. The multi-directional irregular waves are tested in the DOEB and the numerical tank, and directional wave spectra obtained from two methodologies are estimated and compared. A correction procedure for the directional distribution of multi-directional waves is established, and the possibility of correcting the directional spreading function using the numerical tank is validated.

Development of an Electro Impedance Spectroscopy device for EDLC super capacitor characterization in a mass production line (EDLC 슈퍼 캐피시터 특성 분석을 위한 양산용 전기화학 분석 장치 개발)

  • Park, Chan-Hee;Lee, Hye-In;Kim, Sang-Jung;Lee, Jung-Ho;Kim, Sung-Jin;Lee, Hee-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5647-5654
    • /
    • 2012
  • In this paper, we developed an electro impedance spectroscopy (EIS) device, which are primarily used for the analysis of fuel cells or batteries, to widen its coverage to the next generation super capacitor EDLC characterization. The developed system was composed of a signal generator that can generate various signal patterns, a potentiostatic generator, and a high speed digital filter for signal processing and measurement program. The developed system is portable, which is not only suitable laboratory use but also for mass production line. The special features of the system include a patterned output signal from 0.01 to 20 kHz, and a fast Fourier transform (FFT) analysis of current signals, both of which are acquired simultaneously. Our tests showed similar results after comparing the analysis from our newly-developed device showing the characteristics of EDLC complex impedance and the analysis from an equivalent impedance which was applied to an equivalent circuit. Now, we can expect a fast inspection time from the application of the present system to the super capacitor production line, based on time-varying changes in electrochemical impedance.

Vibration and Impact Transmission for each Variable of Woodpile Metamaterial (우드파일 메타물질의 변수 별 진동 및 충격에 끼치는 영향)

  • Ha, Young sun;Hwang, Hui Y.;Cheon, Seong S.
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.155-160
    • /
    • 2021
  • Metamaterials are complexes of elements that can create properties not found in naturally occurring materials, such as changing the direction of forces, creating negative stiffness, or altering vibration and impact properties. In the case of wood pile metamaterials that are easy to manufacture and have excellent performance in reducing vibration and shock in the vertical direction, basic research on variables affecting shock transmission is needed to reduce shock. Although research on impact reduction according to geometrical factors is being conducted recently, studies on the effect of material variables on impact reduction are insufficient. In this paper, finite element analysis was carried out by variablizing the geometrical properties (lamination angle, diameter, length) and material properties (modulus of elasticity, specific gravity, Poisson's ratio) of wood pile cylinders. Through finite element analysis, the shape of the wooden pile cylinder delivering impact was confirmed, and the effect of each variable on the reduction of impact force and energy was considered through main effect diagram analysis, and frequency band analysis was performed through fast Fourier transform. proceeded In order to reduce the impact force and vibration, it was found that the variables affecting the contact area of t he cylinder have a significant effect.

Development of Algorithm for Vibration Analysis Automation of Rotating Equipments Based on ISO 20816 (ISO 20816 기반 회전기기 진동분석 자동화 알고리즘 개발)

  • JaeWoong Lee;Ugiyeon Lee;Jeongseok Oh
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.93-104
    • /
    • 2024
  • Facility diagnosis is essential for the smooth operation and life extension of rotating equipment used in industrial sites. Compared to other diagnostic methods, vibration diagnosis can find most of the initial defects, such as unbalance, alignment failure, bearing defects and resonance, compared to other diagnostic methods. Therefore, vibration analysis is the most commonly used facility diagnosis method in industrial sites, and is usefully used as a predictive preservation (PdM) technology to manage the condition of the facility. However, since the vibration diagnosis method is performed based on experience based on the standard, it is carried out by experts. Therefore, it is intended to contribute to the reliability of the facility by establishing a system that anyone can easily judge defects by establishing a vibration diagnosis method performed based on experience as a knowledgeable code system. An algorithm was developed based on the ISO-20816 standard for vibration measurement, and the reliability was verified by comparing the results of vibration measurement at various demonstration sites such as petrochemical plant compressors, hydrogen charging stations, and industrial machinery with the results of analysis using a development system. The developed algorithm can contribute to predictive maintenance (PdM) technology that anyone can diagnose the condition of the rotating machine at industrial sites and identify defects early to replace parts at the exact time of replacement. Furthermore, it is expected that it will contribute to reducing maintenance costs and downtime due to the failure of rotating machines when applied to various industrial sites such as oil refining facilities, transportation, production facilities, and aviation facilities.