• Title/Summary/Keyword: FFT (Fast Fourier Transform) analysis

Search Result 240, Processing Time 0.045 seconds

Relationship Between Frictional Sounds and Mechanical Properties of Vapor Permeable Water Repellent Fabrics for Active Wear (스포츠웨어용 투습발수직물의 마찰음과 역학적 성질 간의 상관성)

  • Yang, Yoon-Jung;Park, Mi-Ran;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.10 no.4
    • /
    • pp.566-571
    • /
    • 2008
  • Frictional sounds of 8 vapor permeable water repellent fabrics by sound generator were recorded and analyzed through FFT fast Fourier transform analysis. The frictional Sounds were quantified by calculating level pressure of total sound(LPT), the level range(${\Delta}L$) and the frequency difference(${\Delta}f$). Mechanical properties were measured by KES-FB. LPT values of specimens finished wet coating were higher than those of other kinds of finishing. ${\Delta}L$ values of specimens laminated were highest. Absolute values of ${\Delta}f$ were high in the cire finished and laminated specimens. Values for bending rigidity, shear stiffness and energy required for the compression of coated specimens increased compared with the cire finished and laminated specimens. Laminated specimens had high values of frictional coefficient and low values of surface roughness. Relationship between frictional sounds and mechanical properties analysed by use of correlation coefficients and stepwise regression. LPT showed significant correlation with elongation, tensile energy, geometrical roughness, weight and thickness. ${\Delta}L$ was highly correlated with tensile linearity, frictional coefficient, and ${\Delta}f$ with tensile linearity, weight and thickness. LPT were revealed to be explained by elongation and weight. ${\Delta}L$were predicted by tensile linearity, and ${\Delta}f$ by tensile linearity and thickness.

Design of the Fittest Eddy Current Probe for the Fin Tubes (Fin 튜브의 와전류탐상을 위한 최적 탐촉자의 설계)

  • Kim, Y.J.;Lee, S.K.;Ahn, B.Y.;Chung, M.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.3
    • /
    • pp.156-161
    • /
    • 1997
  • The eddy current probe was designed for the test of fin tubes that have uneven outer and inner surfaces to enhance the efficiency of heat emission. Because of the surface roughness of the fin tube, it needs much care to detect flaws in the tube employing eddy current test(ECT). We made ECT probes with different coil lengths and performed eddy current test using these probes for artificially flawed specimens. By the fast Fourier transform and digital filtering, signals from these probes were processed to characterize frequency spectra. From the analysis of eddy current signals and their frequency spectra, we concluded that, for the effective testing of the tubes with the fins of 1mm pitch, 4mm coil length gave the highest S/N ratio.

  • PDF

Terrain Feature Extraction and Classification using Contact Sensor Data (접촉식 센서 데이터를 이용한 지질 특성 추출 및 지질 분류)

  • Park, Byoung-Gon;Kim, Ja-Young;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.171-181
    • /
    • 2012
  • Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non-contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.

Analysis of GPS Signal Acquisition Performance

  • Li, Xiaofan;Manandhar, Dinesh;Shibasaki, Ryosuke
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.229-234
    • /
    • 2006
  • Acquisition is to detect the presence of the GPS signal. Once the signal is detected, the estimated frequency and code phase are passed to a tracking loop to demodulate the navigation data. In order to detect the weak signal, multiple length of data integration is always needed. In this paper, we present five different acquisition approaches based on circular correlation and Fast Fourier Transform (FFT), using coherent as well as non-coherent integration techniques for the multiple length of collected GPS satellite signal. Moreover a general approach of determining the acquisition threshold is introduced based on noise distribution which has been proved effective, and independent of the hardware. In the end of this paper, the processing speed and acquisition gain of each method are illustrated, compared, and analyzed. The results show that coherent approach is much more time consuming compared to noncoherent approaches, and in the case of multiple length of data integration from 2ms to 8ms, the processing times consumed by the fastest non-coherent acquisition method are only 25.87% to 1.52% in a single search, and 34.76% to 1.06% in a global search of those in the coherent acquisition. However, coherent acquisition also demonstrates its better performance in the acquisition gain, and in the case of 8ms of data integration it is 4.23 to 4.41 dB higher than that in the non-coherent approaches. Finally, an applicable scheme of combining coherent and non-coherent acquisition approaches in the development of a real-time Software GPS receiver in the University of Tokyo is provided.

  • PDF

Determination of Optimal Accelerometer Locations for Bridges using Frequency-Domain Hankel Matrix (주파수영역 Hankel matrix를 사용한 교량의 가속도센서 최적위치 결정)

  • Kang, Sungheon;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.27-34
    • /
    • 2016
  • A new algorithm for determining optimal accelerometer locations is proposed by using a frequency-domain Hankel matrix which is much simpler to construct than a time-domain Hankel matrix. The algorithm was examined through simulation studies by comparing the outcomes with those from other available methods. To compare and analyze the results from different methods, a dynamic analysis was carried out under seismic excitation and acceleration data were obtained at the selected optimal sensor locations. Vibrational amplitudes at the selected sensor locations were determined and those of all the other degrees of freedom were determined by using a spline function. MAC index of each method was calculated and compared to look at which method could determine more effective locations of accelerometers. The proposed frequency-domain Hankel matrix could determine reasonable selection of accelerometer locations compared with the others.

Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow

  • Qiu, Chengcheng;Pan, Guang;Huang, Qiaogao;Shi, Yao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.102-115
    • /
    • 2020
  • In this study, the SST k - ω turbulence model and the sliding mesh technology based on RANS method have been adopted to simulate the exciting force and hydrodynamic of a pump-jet propulsor in different oblique inflow angle (0°, 10°, 20°, 30°) and different advance ratio (J = 0.95, J = 1.18, J = 1.58).The fully structured grid and full channel model have been adopted to improved computational accuracy. The classical skewed marine propeller E779A with different advance ratio was carried out to verify the accuracy of the numerical simulation method. The grid independence was verified. The time-domain data of pump-jet propulsor exciting force including bearing force and fluctuating pressure in different working conditions was monitored, and then which was converted to frequency domain data by fast Fourier transform (FFT). The variation laws of bearing force and fluctuating pressure in different advance ratio and different oblique flow angle has been presented. The influence of the peak of pulsation pressure in different oblique flow angle and different advance ratio has been presented. The results show that the exciting force increases with the increase of the advance ratio, the closer which is to the rotor domain and the closer to the blades tip, the greater the variation of the pulsating pressure. At the same time, the exciting force decrease with the oblique flow angle increases. And the vertical and transverse forces will change more obviously, which is the main cause of the exciting force. In addition, the pressure distribution and the velocity distribution of rotor blades tip in different oblique flow angles has been investigated.

Performance analysis of joint equalizer and phase-locked loop in underwater acoustic communications (수중 음향통신에서 위상고정루프와 결합된 등화기의 성능분석)

  • Kim, Seunghwan;Kim, In Soo;Do, Dae-Won;Ko, Seokjun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.166-173
    • /
    • 2022
  • In this paper, the performance of joint equalizer and phase-locked loop in underwater communications is analyzed. In the channel where the Doppler frequency exists, it is difficult to recover the transmitted data only by the equalizer. To compensate for the Doppler frequency, the phase-locked loop is used. For removing the time-varying multipath and the Doppler frequency simultaneously, the equalizer and the phase-locked loop operate jointly. Also, if the initial Doppler frequency error obtained by Fast Fourier Transform (FFT) is compensated, the convergence speed of the joint equalizer and phase-locked loop can be improved. To verify the performance, lake and sea experiments were conducted. As a result, it was showed that the joint equalizer and phase-locked loop converges sufficiently in the preamble (known data) period regardless of whether the Doppler frequency is compensated or not. And, the bit error in random data period is not occurred. However, we can increase the convergence speed of the equalizer more than twice through the compensation of Doppler frequency.

A Comparison of the Gravimetric Geoid and the Geometric Geoid Using GPS/Leveling Data (GPS/Leveling 데이터를 이용한 기하지오이드와 중력지오이드의 비교 분석)

  • Kim, Young-Gil;Choi, Yun-Soo;Kwon, Jay-Hyoun;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.217-222
    • /
    • 2010
  • The geoid is the level surface that closely approximates mean sea level and usually used for the origin of vertical datum. For the computation of geoid, various sources of gravity measurements are used in South Korea and, as a consequence, the geoid models may show different results. however, a limited analysis has been performed due to a lack of controlled data, namely the GPS/Leveling data. Therefore, in this study, the gravimetric geoids are compared with the geodetic geoid which is obtained through the GPS/Leveling procedures. The gravimetric geoids are categorized into geoid from airborne gravimetry, geoid from the terrestrial gravimetry, NGII geoid(geoids published by National Geographic Information Institute) and NORI geoid(geoi published by National Oceanographic Research Institute), respectively. For the analysis, the geometric geoid is obtained at each unified national control point and the difference between geodetic and gravimetric geoid is computed. Also, the geoid height data is gridded on a regular $10{\times}10-km$ grid so that the FFT method can be applied to analyze the geoid height differences in frequency domain. The results show that no significant differences in standard deviation are observed when the geoids from the airborne and terrestrial gravimetry are compared with the geomertric geoid while relatively large difference are shown when NGII geoid and NORI geoid are compared with geometric geoid. Also, NGII geoid and NORI geoid are analyzed in frequency domain and the deviations occurs in long-wavelength domain.

Acoustic Emission (AE) Technology-based Leak Detection System Using Macro-fiber Composite (MFC) Sensor (Macro fiber composite (MFC) 센서를 이용한 음향방출 기술 기반 배관 누수 감지 시스템)

  • Jaehyun Park;Si-Maek Lee;Beom-Joo Lee;Seon Ju Kim;Hyeong-Min Yoo
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.429-434
    • /
    • 2023
  • In this study, aimed at improving the existing acoustic emission sensor for real time monitoring, a macro-fiber composite (MFC) transducer was employed as the acoustic emission sensor in the gas leak detection system. Prior to implementation, structural analysis was conducted to optimize the MFC's design. Consequently, the flexibility of the MFC facilitated excellent adherence to curved pipes, enabling the reception of acoustic emission (AE) signals without complications. Analysis of AE signals revealed substantial variations in parameter values for both high-pressure and low-pressure leaks. Notably, in the parameters of the Fast Fourier Transform (FFT) graph, the change amounted to 120% to 626% for high-pressure leaks compared to the case without leaks, and approximately 9% to 22% for low-pressure leaks. Furthermore, depending on the distance from the leak site, the magnitude of change in parameters tended to decrease as the distance increased. As the results, in the future, not only will it be possible to detect a leak by detecting the amount of parameter change in the future, but it will also be possible to identify the location of the leak from the amount of change.

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method (EEMD법을 이용한 저속 선회베어링 상태감시)

  • Caesarendra, W.;Park, J.H.;Kosasih, P.B.;Choi, B.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-143
    • /
    • 2013
  • Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it became necessary for a proper maintenance schedule that replaces the slewing bearings installed in massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is still the primary technique used for dealing with low-speed bearing cases. Few studies employed vibration analysis because the signal generated as a result of the impact between the rolling element and the natural defect spots at low rotational speeds is generally weak and sometimes buried in noise and other interference frequencies. In order to increase the impact energy, some researchers generate artificial defects with a predetermined length, width, and depth of crack on the inner or outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational speed of 15 rpm. The natural vibration damage data used in this paper are obtained from a Korean industrial company. In this study, EEMD is used to support and clarify the results of the fast Fourier transform(FFT) in identifying bearing fault frequencies.