• Title/Summary/Keyword: FEM temperature crack analysis

Search Result 20, Processing Time 0.024 seconds

An Experimental Study on Hydration Heat Characteristics for Thermal Crack Analysis Based on FEM of Urea Mixed Mass Concrete (Urea 혼입 매스콘크리트의 FEM 온도균열 해석을 위한 수화발열특성에 관한 실험적 연구)

  • Mun, Dong-Hwan;Jang, Hyun-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.36-37
    • /
    • 2019
  • In domestic construction industry progress, construction and quality control of large structures are considered to be important as the superstructure and mass scale of structures. In the case of mass concrete, high hydration heat caused by cement hydration generates temperature stress by generating internal temperature difference with the concrete surface. These temperature stresses cause cracks to penetrate the concrete structure. A method of lowering the heat generation by incorporating Urea in order to reduce the concrete temperature crack has been proposed. In this study, the heat function coefficient for the FEM temperature crack analysis of the mass concrete containing the element was derived and the adiabatic temperature rise test was carried out according to the incorporation of the element. As a result of this experiment, the maximum temperature of 41 ± 1℃ was obtained irrespective of the amount of urea, and the maximum temperature decreased by 16.9℃ in concrete containing 40kg/㎥ of urea.

  • PDF

Prediction of Liquation Crack Initiation at HAZ of Laser Weldment Based on Strain Analysis at Elevated Temperature

  • Yamamoto, Motomichi;Shinozaki, Kenji;Kitamura, Mitsuru;Shirai, Makoto
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.244-249
    • /
    • 2002
  • The purpose of this study is to develope the prediction method of liquation crack initiation in HAZ of laser weldment. Thermal two dimensional strain analyses were performed by FEM for bead-on-plate welding in order to obtain the plastic strain at elevated temperature in HAZ of the laser weldment. From these results, it became clear that the plastic strain at elevated temperature affected liquation crack initiation in HAZ, and it could be proposed that the critical strain, which controlled liquation crack initiation, existed. Moreover, an attempt was made to develop thermal and dynamic three dimensional strain analysis method for the laser weldment in order to obtain the plastic strain at elevated temperature in HAZ of the laser weldment in more detail and precisely.

  • PDF

A study on the Shrinkage Properties of precast concrete using Calcium hardening accelerator (칼슘계 경화촉진제를 사용한 프리캐스트 콘크리트의 수축특성에 관한 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.44-45
    • /
    • 2014
  • On this study, initial crack index was evaluated by performing FEM analysis to crack propagation from hydration heat for development of precast concrete. On the result, as increased the usage of hardening accelerator, initial compressive strength were improved and setting time also was shortened. Additionally, central temperature of concrete was increased, the reaching time for the highest temperature could be shortened. By the result to assess crack index, there was no problem about crack despite of growth of initial high hydration heating. This result guessed because of small size element when analyzed trough FEM, realization for mass concrete's crack index should be performed.

  • PDF

Effect of Hardening Accelerators on the Adiabatic Temperature property Properties of Precast Concrete and FEM analysis for Evaluating the Crack Performance (경화촉진제를 사용한 프리캐스트 콘크리트의 단열온도특성 및 FEM해석에 의한 균열성능 평가에 관한 연구)

  • Min, Tae-Beom;Cho, In-Sung;Mun, Young-Bum;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, initial crack index was evaluated by FEM analysis to find the crack propagation from hydration heat in precast concrete. As results, as the usage of hardening accelerator increased, initial compressive strength increased and setting time was shortened. Additionally, as amounts of hardening accelerators increased, the central temperature of concrete increased and the time to reach the highest temperature was shortened. It was demonstrated that the hardening accelerators accelerated the hydration reaction of cement, and caused the increase of hydration heat within the short period of time. Furthermore, the crack index for evaluating the heat level was performed by FEM. As results, there was no problem about the cracks, despite of the growth of initial high hydration heat. This is because of the increased tensile strength that is large enough to sustain the thermally induced-stress.

Thermal Crack Control of LNG Tank Roof (LNG 탱크 Roof의 온도균열 제어)

  • 김태홍;하재담;유재상;이종열;권영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.421-424
    • /
    • 2002
  • Concrete roof in In-Chon LNG tank #15~18 is a very important structure. Precise control of quality is needed. This roof has 0.6~1.5m thickness, 36.23m radius, and, 12.7m height. So in this structure thermal crack caused by hydration heat should be controled. In this project belite cement plus LSP concrete is used. As a result of ambient temperature rising test and thermal analysis using FEM, this belite cement plus LSP concrete is expected to control the thermal crack well.

  • PDF

Deep drawing of AZ31 alloy sheet in the warm forming temperature (AZ31 합금의 온간 디프 드로잉에 관한 연구)

  • KIM M. C.;LEE Y. S.;KWON Y. N.;LEE J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.175-179
    • /
    • 2004
  • Since the formability of AZ31 magnesium alloy is not good in room temperature, it is known that high temperature forming is advantageous. However, many studies are necessary to find the proper forming temperature for Mg alloy. In this study, experimental and FEM analysis are performed to investigate the forming temperature for AZ31 sheet. The deep drawing process of square cup is used in forming experiment and FEA. The investigations are performed in three forming temperature, room temperature, $250^{\circ}C\;and\;400^{\circ}C$. The square cup is well formed in $250^{\circ}C$ forming temperature, on the other hand, the crack and failure is presented in corner section in room and $250^{\circ}C$ forming temperature. The main cause is investigated as the effect of hardening range by the experimental and FEM results.

  • PDF

Thermo-Mechanical Fatigue Analysis of Ribbon Wire/Ag Electrode Interfaces for PV Module

  • Park, No-Chang;Hong, Won-Sik;Han, Chang-Un;Kim, Dong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.48.1-48.1
    • /
    • 2011
  • In this presentation, We monitored weather data, such as global irradiance, ambient temperature, temperature of PV module, relative humidity and windspeed for 2 years, for determining accelerated test condition. then, we determined the temperature limit of accelerated test through weather data and FEM analysis. Detailed procedures will be summarized in this work. After analysing outdoor stress such as thermal stress, we decided main failure modes and mechanisms of PV module, especially solder joint of ribbon wire. we carried out the measurement of material properties such as thermal expansion coefficient for planning of accelerated test. we designed accelerated test based on FEM analysis results. we carried out thermal cycling test with 1 cell mini module for 3 months. We monitored the change of electrical performance every 1 week such as Voc, Isc, Pmax, etc. and then, we analized the ribbon wire/electrode intefaces. Detailed results will be summarized in this work.

  • PDF

Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM

  • Eltaher, Mohamed A.;Attia, Mohamed A.;Soliman, Ahmed E.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.97-111
    • /
    • 2018
  • Cracking can lead to unexpected sudden failure of normally ductile metals subjected to a tensile stress, especially at elevated temperature. This article is raised to study the application of a composite material instead of the traditional carbon steel material used in the natural gas transmission pipeline because the cracks occurs in the pipeline initiate at its internal surface which is subjected to internal high fluctuated pressure and unsteady temperature according to actual operation conditions. Functionally graded material (FGM) is proposed to benefit from the ceramics durability and its surface hardness against erosion. FGM properties are graded at the radial direction. Finite element method (FEM) is applied and solved by ABAQUS software including FORTRAN subroutines adapted for this case of study. The stress intensity factor (SIF), temperatures and stresses are discussed to obtain the optimum FGM configuration under the actual conditions of pressure and temperature. Thermoelastic analysis of a plane strain model is adopted to study SIF and material response at various crack depths.

A Study on the Fatigue Life Prediction of Solder Joints under Thermal Cyclic Loading (온도사이클을 받는 Solder Joint의 피로수명에 관한 연구)

  • 김진기;이순복
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.44-55
    • /
    • 1994
  • This study is to apply the theory of fatigue fracture to solder joints under thermal cyclic loading and predict life of solder joint to failure. A 62Sn-36Pb-2Ag solder was used in this study. Tensile tests were preformed at temperatures of 15.dec. C, 50.dec. C and 85.dec. C in order to find terms of crack length "a". plastic strain range ""${\Delta}{\varepsilon}_p$" and temperature "T". Solder joint under thermal cyclic loading was analyzed by FEM. this FEM analysis together with the crack growth rate will provide the capability of the fatigue life prediction of solder joints and enhance the reliability od solder joint.

  • PDF

Evaluation of Hydration Heat of Mass Concrete with Capsulated Slurry PCM and FEM Study for Analyzing Thermal Crack (캡슐형 슬러리 PCM을 혼입한 매스콘크리트의 수화열 평가 및 온도균열 FEM 해석에 관한 연구)

  • Park, ChangGun;Kim, Bo-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.379-388
    • /
    • 2014
  • The purpose of this study is to investigate the effect of capsulated slurry phase change material (PCM) on the thermal crack in mass concrete by experimental work and FEM analysis. In this study, three conditions of samples were prepared for evaluating the level of hydration heat, i.e., a material condition, a cement paste condition and a concrete condition. Also, a compressive strength test was conducted for FEM inverse analysis. Based on the results of the experiment, exothermic function coefficients of concrete with encapsulated slurry PCM were deducted by the inverse analysis. After that, they applied to FEM analysis of the mass scale concrete structures. From the results of this experiment, $31^{\circ}C$ capsulated slurry PCM had no super cooling phenomenon in the material condition. In the cement condition, hydration heat decreased by 34.61J when PCM of 1g was mixed. In the concrete condition, PCM of 6% was deducted as the best level in hydration heat absorption. In FEM inverse analysis, rate coefficient of reaction gradually decreased when PCM mixing ratio increased. But, temperature-rise coefficient increased when PCM mixing ratio exceeded 6%. For the inversed exothermic function coefficients applying to large scale concrete structures, a thermal cracking index increased by 0.05 when PCM of 1% was mixed.