• Title/Summary/Keyword: FEM stress analysis

Search Result 1,173, Processing Time 0.025 seconds

Numerical Study for Tunnel Shotcrete Lining Operated Stress Measurement Techique Development During a Construction (시공중 터널 숏크리트 라이닝 작용응력 측정기법 개발을 위한 수치해석적 연구)

  • Shin, Hyu-Seong;Kim, Dong-Gyou;Jung, Yong-Su;Hwang, Jae-Hong;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.754-761
    • /
    • 2008
  • In general, stress measurement of existent shotcrete lining be used by pressure cells. but, measuring instrument is lost by high pressure at shotcrete lining construction and pressure cell's measurement value have to low believability by natural conditions like curing temperature. In this study, proposed techniques to measure without utilizing sensitive stress sensor in natural condition at point that want stress of shotcrete lining after shotcrete lining construction. Executed numerical analysis to forecast stress level that interact in tunnel shotcrete lining, measured strain of hole by load action through hole in shotcrete lining. 3D FEM(finite element method) is enforced through various parameters curing time of shotcrete lining, thickness, load condition. Different model cases applied by parametic study. As analysis result, it could grasp development possibility of method that propose this time because it could examine corelation with strain by near hole of shotcrete lining and stress about load condition.

  • PDF

A Study on the Analysis of the Thermal Stress in Process of STS 304 TIG Welding (STS 304 TIG 용접시 발생하는 열응력 해석에 관한 연구)

  • 고준빈;최원두;이영호
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.658-663
    • /
    • 2001
  • Residual stress caused in the weldments with high restraint force are often during welding observed in the weldments of large size nozzles or radial tanks. The reason is that quantitative analysis about thermal stresses during welding is lack for this weldments. To verify FEM theory, the temperature was measured with thermocouple in a real time in this paper. Also analysis of the thermal stress for welding condition is performed by ABAQUS program package on various welding condition in STS butt welding.

  • PDF

Verification and Suggestion of Optimization Method for Rivet Arrangement with Regard to Stress Concentration between Hole-Edge and Hole-Hole on a 2-D Plate (2차원 평판 내 구멍-모서리 및 구멍간의 응력 집중 효과를 고려한 리벳 배치 최적화 기법 검증 및 제안)

  • Lee, Sang Gu;Gong, Du Hyun;Sim, Ji Soo;Shin, Sang Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.491-498
    • /
    • 2016
  • Stress on plates may increase in the neighborhood the edges or the holes for rivets or bolts. Excessive stress concentration may lead to severe breakage of the plates. Thus, it is important to conduct optimization of arrangement of holes at the design stage. In this paper, accuracy of FEM analysis was examined for such stress concentration. By changing the hole size on a narrow plate, change of the stress concentration factor(K) was investigated. Additionally, the same experiment was conducted about series of multiple holes on plate to investigate interaction between the adjacent holes. Then, the FEM results were compared to the reference predictions respectively. Finally, a method by which simple stress concentrating situations can be optimized, will be suggested. This method was examined by FEM, and showed similar tendency with the expectation. Therefore, this method can be valuable when arranging the holes on a plate.

Development of Stress Evaluation Equation of Circular Column-Box Beam Connections (원형기둥-상자형보 접합부의 응력평가식 개발)

  • 이주혁;김정환;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.227-234
    • /
    • 2003
  • This study presents the stress evaluation equations of circular column-box beam connection in steel frame piers. FEM analysis were carried out for circular column-box beam connection. Analysis models were made for design parameters such as joint angle, span length-width ratio(L/B), sectional-area ratio(S=A/sub w/A/sub f/), and circular column-box beam stiffness ratio(Ic/Ib). Analysis results were compared to the existing equation. Based on analysis results the stress evaluation equations of circular column-box beam connection are proposed by regression analysis.

  • PDF

development of a model of the exhaust System for the Stress Analysis (응력해석을 위한 배기계 모델 개발)

  • 이장명;박성태;김상호;조규수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.370-376
    • /
    • 1997
  • A Simplified Finite Element Method(FEM) model has been developed for the Exhaust System. For the verification of the usage of the developed model , Natural Frequencies, Mode Shapes and Frequency Response Function have been compared between numerical analysis and experimental result. It shows that the developed numerical model also can be utilized to prove the Stress distribution of the Exhaust System if it can be adopted for the vibration analysis adequately.

  • PDF

Development of a Model of the Exhaust System for the Stress Analysis (응력해석을 위한 배기계 모델 개발)

  • 김상호;이장명;박성태
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.295-301
    • /
    • 1999
  • A Simplified Finite Element Method(FEM) model has been developed for the Exhaust System. For the verification of the usage of the developed model. Natural Frequencies, Mode Shapes and Frequency Response Function have been compared between numerical analysis and experimental result. It shows that the developed numerical model also can be utilized to prove the Stress distribution of the Exhaust System if it can be adopted for the vibration analysis adequately.

  • PDF

Numerical modeling of the damaged cement orthopedic in three variants of total hip prostheses

  • Cherfi Mohamed;Zagane Mohammed El Sallah;Moulgada Abdelmadjid;Ait Kaci Djafar;Benouis Ali;Zahi Rachid;Sahli Abderahmen
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.251-262
    • /
    • 2024
  • Numerical modeling using the finite element method (FEM) offers crucial insights into the mechanical behavior of prostheses, including stress and strain distribution, load transfer, and stress intensity factors. Analyzing cracking in PMMA surgical cement (polymethylmethacrylate) for total hip prostheses (THP) is essential for understanding the loosening phenomenon, as the rupture of orthopedic cement is a primary cause. By understanding various failure mechanisms, significant advancements in cemented total prostheses can be achieved. This study performed a numerical analysis using a 3D FEM model to evaluate stress levels in different THP models, aiming to model damage in the orthopedic cement used in total hip arthroplasty. Utilizing ABAQUS software, FEM, and XFEM, the damage in three types of THPs-Charnley (CMK3), Osteal (BM3), and THOMPSON was modeled under stumbling loading conditions. XFEM allowed for the consideration of crack propagation between the cement and bone, while the GEARING criterion employed a user-defined field subroutine to model damage parameters. The study's findings can contribute to improving implant fixation techniques and preventing postoperative complications in orthopedic surgery.

A Compositional Design with Finite Element Method(FEM) in Functionally Gradient Materials (유한요소법을 이용한 경사기능재료의 조성설계)

  • Bae, I.S.;Jeon, W.Y.;Kim, I.K.;Soel, K.W.;Woo, K.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 1997
  • Although functionally gradient materials(FGM) has been developed so as to decrese the thermal stress induced by the high temperature difference between metal and ceramic, it is necessary to analyze the residual thermal stress for the fabrication of FGM. In order to reduce the residual thermal stress, compositional profile of SUS/PSZ(FGM) was suggested using finite element method(FEM). The stress analysis was made on the shape of cylinder with axial symmetry using two dimensional triangular element. For the case of various cylinder with different compositional gradient, calculated stress components were in reasonably good agreement with the expected ones. And the qualitative profile was suggested.

  • PDF

Analysis of a three-dimensional FEM model of a thin piezoelectric actuator embedded in an infinite host structure

  • Zeng, Xiaohu;Yue, Zhufeng;Zhao, Bin;Wen, S.F.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.237-257
    • /
    • 2014
  • In this paper, we adopted a two-dimensional analytical electro-elastic model to predict the stress distributions of the piezoelectric actuator in 3D case. The actuator was embedded in an elastic host structure under electrical loadings. The problem is reduced to the solution of singular integral equations of the first kind. The interfacial stresses and the axial normal stress in both plane stress state and plane strain state were obtained to study the actuation effects being transferred from the actuator to the host. The stress distributions of the PZT actuator in different length and different thickness were analyzed to guarantee the generality. The validity of the present model has been demonstrated by application of specific examples and comparisons with the corresponding results obtained from the Finite Element Method.