• 제목/요약/키워드: FEM comparison

검색결과 484건 처리시간 0.023초

3D-EMCN법을 이용한 광 픽업 액츄에이터의 해석 및 최적설계 (Analysis and Optimal Design of Optical Pickup Actuator by 3D-EMCN Method)

  • 김진아;전태경
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권5호
    • /
    • pp.234-241
    • /
    • 2002
  • An optical pickup actuator is an objective-lens-moving mechanism that provides a means to follow the disk displacement accurately(1). In this paper, a slim type optical pickup actuator for Notebook PCs is analyzed and designed to improve the driving sensitivity A three dimensional equivalent magnetic circuit network method (3D-EMCN method) is proposed for an analysis method which provides better characteristics in both precision and computation time of analysis comparing with a commercial three-dimensional finite element (3D-FEM) codes. To verify the validity of proposed method, we made a comparison between the analysis results and the experimental ones. We also compared this analysis results with 3D-FEM results. Among the several optimal algorithm, we adopt a niching genetic algorithm, which renders a set of the multiple optimal solutions. RCS (Restricted Competition Selection) niching genetic algorithm is used for optimal design of the actuator's performance. Recently, the pickup actuator needs additional driving structure for radial and tangential tilting motion to obtain better pick-up performance. So we applied the proposed method to the model containing tilting coils.

롤투롤 와인딩 시스템에서 소재 특성을 고려한 반경 방향 응력에 대한 연구 (Study on the Radial Stress Considering Mechanical Characteristics of Substrate in Wound Rolls)

  • 김성용;이창우
    • 한국정밀공학회지
    • /
    • 제33권2호
    • /
    • pp.115-119
    • /
    • 2016
  • Winding is one of the major processes in roll-to-roll systems. Taper tension profile in a winding determines the distribution of stress in the radial direction, i.e., the radial stress in the wound rolls. Maximum radial stress is major cause of material defect, and this study has been actively proceeded. Traditional models of radial stress model were focused on flexible and light substrate. In this study, we developed an advanced radial stress model including effects of both these parameters(weight and stiffness) on the radial stress. The accuracy of the developed model was verified through FEM(Finite Element Method) analysis. FEM result of maximum radial stress value corresponds to 99 % in comparison to result with the model. From this study, the material defects does not occur when the steel winding. And steel industry can be applied to improve the winding process.

압전 프린트 헤드에 의한 금속프린팅의 미세패턴제어 (Micro Pattern Control of Metal Printing by Piezoelectric Print-head)

  • 윤신용;최근수;백수현;장홍순;서상현
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.147-151
    • /
    • 2011
  • We were analyzed the piezoelectric characteristic for electronics printing to inkjet printing system. These applications were possible use to Actuator, MEMS, FPCB, RFID, Solar cell and LCD color filter etc. Piezoelectric print head is firing from ink droplet control consideration ink viscosity properties. At this time, micro pattern for PCB metal printing was possible by droplet control of piezoelectric driving. These driving characteristics are variable voltage pulse waveform. We are used the piezoelectric analysis software of Finite Element Method (FEM), Piezoelectric design parameters are acquired from piezoelectric analysis, and measurement of piezoelectric. It designed for piezoelectric head to possible electric print pattern of inkjet printing system. For this validity we were established through in comparison with simulation and measurement. Designed piezoelectric specification obtained voltage 98V, firing frequency 10 kHz, resolution 360dpi, drop volume 20pl, nozzle number 256, and nozzle pitch 0.33 mm.

Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam

  • Liu, Zhifeng;Yin, Yunyao;Wang, Feng;Zhao, Yongsheng;Cai, Ligang
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.697-709
    • /
    • 2013
  • A simulation method called modified differential transform is studied to solve the free vibration problems of uniform Euler-Bernoulli beam. First of all, the modified differential transform method is derived. Secondly, the modified differential transformation is applied to uniform Euler-Bernoulli beam free-free vibration. And then a set of differential equations are established. Through algebraic operations on these equations, we can get any natural frequency and normalized mode shape. Thirdly, the FEM is applied to obtain the numerical solutions. Finally, mode experimental method (MEM) is conducted to obtain experimental data for analysis by signal processing with LMS Test.lab Vibration testing and analysis system. Experimental data and simulation results are illustrated to be in comparison with the analytical solutions. The results show that the modified differential transform method can achieve good results in predicting the solution of such problems.

Development and application of construction monitoring system for Shanghai Tower

  • Li, Han;Zhang, Qi-Lin;Yang, Bin;Lu, Jia;Hu, Jia
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1019-1039
    • /
    • 2015
  • Shanghai Tower is a composite structure building with a height of 632 m. In order to verify the structural properties and behaviors in construction and operation, a structural health monitoring project was conducted by Tongji University. The monitoring system includes sensor system, data acquisition system and a monitoring software system. Focusing on the health monitoring in construction, this paper introduced the monitoring parameters in construction, the data acquisition strategy and an integration structural health monitoring (SHM) software. The integration software - Structural Monitoring/ Analysis/ Evaluation System (SMAE) is designed based on integration and modular design idea, which includes on-line data acquisition, finite elements and dynamic property analysis functions. With the integration and modular design idea, this SHM system can realize the data exchange and results comparison from on-site monitoring and FEM effectively. The analysis of the monitoring data collected during the process of construction shows that the system works stably, realize data acquirement and analysis effectively, and also provides measured basis for understanding the structural state of the construction. Meanwhile, references are provided for the future automates construction monitoring and implementation of high-rise building structures.

Shear strength formula of CFST column-beam pinned connections

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.409-421
    • /
    • 2012
  • Recently, as the height of building is getting higher, the applications of CFST column for high-rise buildings have been increased. In structural system of high-rise building, The RC core and exterior concrete-filled tubular (CFST) column-beam pinned connection is one of the structural systems that support lateral load. If this structural system is used, due to the minimal CFST column thickness compared to that of the CFST column width, the local moment occurred by the eccentric distance between the column flange surface from shear bolts joints degrades the shear strength of the CFST column-beam pinned connections. This study performed a finite element analysis to investigate the shear strength under eccentric moment of the CFST column-beam pinned connections. The column's width and thickness were used as variables for the analysis. To guarantee the reliability of the finite element analysis, an actual-size specimens were fabricated and tested. The yield line theory was used to formulate an shear strength formula for the CFT column-beam pinned connection. the shear strength formula was suggested through comparison on the results of FEM analysis, test and yield lime theory, the shear strength formula was suggested.

고급강판용 엔드마크 감소를 위한 고무 슬리브의 개발 (Development of Rubber Sleeve for Reduction of End-mark in Cold Rolled Steel Sheet)

  • 김순경;김동건
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.29-35
    • /
    • 2015
  • In this study, a FEM analysis is undertaken of a rubber sleeve which is mounted onto a spreading mandrel so as to avoid marking the first wrappings of coils (known as the 'end-mark'), as occasionally occurs when a concentrated load is placed on the edge of a steel sheet, significantly reducing its quality. A commercial numerical package, ANSYS, was utilized to analyze the structural behavior of the rubber sleeve. In general, the strain of the sleeve increases as the thickness of the rubber layer (H) covering the tubes increases, thus also increasing the surface of the sleeve for a constant boundary condition, and decreasing the pitch (P) between each tube, resulting in an increase in the strain on the surface of the sleeve for all rubber thickness conditions tested here. In a comparison of two different materials, rubber and urethane, when H=3 mm and P=1.1D, the maximum total deformations in these cases are 0.12669 mm and 0.086623 mm, respectively.

A Study on the Coupled Torsional-Axial Vibration of Marine Propulsion Shafting System using the Energy Method

  • Jang, Min-Oh;Kim, Ue-Kan;Park, Yong-Nam;Lee, Young-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.482-492
    • /
    • 2004
  • Recently. the market trend for marine diesel engine has involved the lower running speeds. larger stroke/bore ratio and higher combustion pressure. Consequently, because of the flexible engine shafting system due to the larger mass. inertia and the more elasticity, the complicated coupled torsional-axial vibrations have occurred in the operating speed range. Also, the vibrations act as an excitation on the hull-structural vibration. To predict the vibration behavior with more accuracy and reliability. many studies have proposed the several kinds of method to calculate the stiffness matrix of crankshaft. However, most of these methods have a weak point to spend much time on three dimensional modeling and meshing work for crankshaft. Therefore. in this work. the stiffness matrix for the crankthrow is calculated using the energy method (Influence Coefficient Method, ICM) with the each mass having 6 degree of freedom. Its effectiveness is verified through the comparison with the stiffness matrix obtained by using the finite element method (FEM) and measured results for actual ships propulsion system.

FEM.SEA기법을 이용한 흡.차음재의 음향 변수의 차량실내음압에 미치는 영향에 관한 연구 (Study on the Estimation of Acoustic Behavior of the Automobile Interior Materials Using FEM and SEA)

  • 김관주;이근호;김현준;이원구
    • 한국소음진동공학회논문집
    • /
    • 제19권4호
    • /
    • pp.378-385
    • /
    • 2009
  • In establishing silent environment such as automobile and industrial instrument, the roles of the insulating materials are critical. The proper and effective positioning of insulating materials is essential in the field of noise as well as in designing silent automobile. In this paper, we proposed the systematic and efficient scheme for optimizing complete automotive interiors for noise control. In order to attain this purpose, following analysis has been carried out: First, measuring the Biot parameters of insulating materials and the transmission loss with reflecting the appropriate arrangement of insulating materials has been experimented. In addition, we made comparison among transmission loss by the tools of analysis and verification, experimental value under consideration of various situations of automobile and analysis by the SEA.

수평축 풍력발전 시스템용 복합재 회전날개의 피로수명 설계에 관한 연구 (A Study on Fatigue Life Design for Horizontal Axis Wind Turbine Composite Blade)

  • 공창덕;방조혁;정종철;강명훈;정석훈;류지윤;김기범
    • 한국추진공학회지
    • /
    • 제3권3호
    • /
    • pp.47-52
    • /
    • 1999
  • 피로시험은 구조설계에 있어서 필수적인 과정으로서, 구조물의 요구수명 만족여부를 판단하기 위해 수행된다. 본 연구에서는 750㎾급 수평축 풍력발전 시스템용 복합재 회전날개가 요구수명 20년이상 안전하게 운용되어질 수 있는지에 대한 검토를 수행하였다. tan Bond의 실험식과 S-N선형 손상 방법을 사용하여 요구 피로강도를 계산하였으며, 설계된 복합재 회전날개의 유한요소 해석 결과와 비교하기 위해 측정하중 스펙트럼과 Spera의 피로하중 실험식을 이용하여 회전날개에 적용시킬 피로하중을 계산하였다. 계산된 피로하중에 대한 유한요소 해석을 수행하여 검토한 결과, fan Bond의 실험식을 이용하여 예측한 최대 요구 피로강도보다 낮은 범위에 있음을 확인하였다.

  • PDF