• Title/Summary/Keyword: FEM Model

Search Result 2,117, Processing Time 0.032 seconds

Analysis of Magnetic Fields induced by Line Currants using Coupling of FEM and Analytical Solution (선전류에 의해 발생되는 자장의 해석을 위한 유한요소법과 해석해의 결합 기법)

  • Kim, Young-Sun;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1035-1037
    • /
    • 2005
  • The analysis of magnetic fields(2-D) induced by line currents, such as Overhead Trolley Lines or Transmission Lines, is not so easy by using the standard Finite Element Method(FEM). Mesh generation is one of the most important processes in the standard FEM. Because, the current region is relatively small compared with whole region, and actually is a line without thickness, the mesh refinement around the source lines yields many demerits. A way of supplement such a defect, we proposed the coupling scheme of analytical solution and FEM. In this study, the analytical solution is adopted around the region of line currents and FE solution is a lied to the rest of source region. And the two types of solution are coupled at the artificial boundary. To verify the usefulness of proposed algorithm, simplified model with magnetic material in FE region is chosen and analyzed. The results are compared with those of standard FEM. And the errors between them can be reduced by increasing harmonic orders.

  • PDF

Seismic Response Evaluation of NPP Structures Considering Different Numerical Models and Frequency Contents of Earthquakes (다양한 수치해석 모델과 지진 주파수 성분을 고려한 원전구조물의 지진 응답 평가)

  • Thusa, Bidhek;Nguyen, Duy-Duan;Park, Hyosang;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the application of various numerical models and frequency contents of earthquakes on the performances of the reactor containment building (RCB) in a nuclear power plant (NPP) equipped with an advanced power reactor 1400. Two kinds of numerical models are developed to perform time-history analyses: a lumped-mass stick model (LMSM) and a full three-dimensional finite element model (3D FEM). The LMSM is constructed in SAP2000 using conventional beam elements with concentrated masses, whereas the 3D FEM is built in ANSYS using solid elements. Two groups of ground motions considering low- and high-frequency contents are applied in time-history analyses. The low-frequency motions are created by matching their response spectra with the Nuclear Regulatory Commission 1.60 design spectrum, whereas the high-frequency motions are artificially generated with a high-frequency range from 10Hz to 100Hz. Seismic responses are measured in terms of floor response spectra (FRS) at the various elevations of the RCB. The numerical results show that the FRS of the structure under low-frequency motions for two numerical models are highly matched. However, under high-frequency motions, the FRS obtained by the LMSM at a high natural frequency range are significantly different from those of the 3D FEM, and the largest difference is found at the lower elevation of the RCB. By assuming that the 3D FEM approximates responses of the structure accurately, it can be concluded that the LMSM produces a moderate discrepancy at the high-frequency range of the FRS of the RCB.

Implementation of Polycrystal Model in Rigid Plastic Finite Element Method (강소성 유한요소법에서의 다결정 모델의 구현)

  • Kang, G.P.;Lee, K.;Kim, Y.H.;Shin, K.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.286-292
    • /
    • 2017
  • Magnesium alloy shows strong anisotropy and asymmetric behavior in tension and compression curve, especially at room temperature. These characteristics limit the application of finite element method (FEM) which is based on conventional continuum mechanics. To accurately predict the material behavior of magnesium alloy at microstructural level, a methodology of fully coupled multiscale simulation is presented and a crystal plasticity model as a constitutive equation in the simulation of metal forming process is introduced in this study. The existing constitutive equation for rigid plastic FEM is modified to accommodate deviatoric stress component and its derivatives with respect to strain rate components. Viscoplastic self-consistent (VPSC) polycrystal model was selected as a constitutive model because it was regarded as the most robust model compared to Taylor model or Sachs model. Stiffness matrix and load vector were derived based on the new approach and implemented into $DEFORM^{TM}-3D$ via a user subroutine handling stiffness matrix at an elemental level. The application to extrusion and rolling process of pure magnesium is presented in this study to assess the validity of the proposed multiscale process.

Development of Two Dimensional Chloride Ion Penetration Model Using Moving Mesh Technique (Moving Mesh Technique을 이용한 2차원 염해 침투 예측 모델의 개발)

  • Choi, Won;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • Most of chloride diffusion models based on finite difference method (FDM) could not express the diffusion in horizontal direction at each elevation. To overcome these weakness, two dimensional chloride ion penetration model based on finite element method (FEM) to be able to combine various multi-physics simultaneously was suggested by introducing moving mesh technique. To avoid the generation of mesh being able to be distorted depending on the relative movement of water level to static concrete, a rectangular type of mesh was intentionally adopted and the total number of meshes was empirically selected. The simulated results showed that the contents of surface chloride decreased following to the increase of elevation in the top part of low sea level, whereas there were no changes in the bottom part of low level. In the DuraCrete model, the diffusion coefficient of splashed zone is generally smaller than submerged zone, whereas the trend of Life365 model is reverse. Therefore, it could be understood that the developed model using moving mesh technique effectively reflects $DuraCrete^{TM}$ model rather than $Life365^{TM}$ model. In the future, the model will be easily expanded to be combined with various multi-physics models considering water evaporation, heat of hydration, irradiation effect of sun and so on because it is based on FEM.

A Billet Heat Transfer Modeling during Reheating Furnace Operation

  • Jang, Yu-Jin;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.863-868
    • /
    • 2004
  • Reheating furnace is an essential facility of a rod mill plant where a billet is heated to the required rolling temperature so that it can be milled to produce wire. Sometimes, it is also necessary to control a transient billet temperature pattern according to the material characteristics to prevent a wire from breaking. Though it is very important objective to obtain a correct information of a billet temperature during furnace operation. Consequently, a billet temperature profile must be estimated. In this paper, a billet heat transfer model based on FEM (Finite Element Method) with spatially distributed emission factors is proposed and a measurement is also carried out for two different furnace operation conditions. Finally, the difference between the model outputs and the measurements is minimized by using the new optimization algorithm named uDEAS(Univariate Dynamic Encoding Algorithm for Searches) with multi-step tuning strategy. Hence, the information of billet temperatures can be obtained by using proposed model on various furnace operation conditions.

  • PDF

Loss characteristics analysis of HTS DC cable using FEM (FEM을 이용한 초전도 직류 케이블의 손실 특성 분석)

  • Kim, Sung-Kyu;Kim, Seok-Ho;Kim, Jin-Geun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.822-823
    • /
    • 2011
  • The authors analyzed harmonic current based loss of a high temperature superconducting (HTS) DC model cable. The loss in HTS DC cable is generated due to the variation of magnetic field caused by harmonic current in a HVDC transmission system. The authors designed and fabricated two meters of HTS DC model cable for verification of real loss characteristic. In this paper, the loss characteristics caused by harmonic current in the HTS DC model cable are analyzed using commercial finite element method software package. The loss of the HTS DC cable is much less than the loss of the HTS AC cable but the loss should be considered to decide a proper capacity of cooling system.

  • PDF

Analysis of the Bone-remodeling Process Considering Stimuli Delivery Cell Model (자극전달세포 모델을 고려한 골 재형성 해석)

  • Moon Hee-Wook;Kim Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.180-186
    • /
    • 2006
  • To investigate the bone remodeling phenomenon around implant device, 3-D mathematical simulation model was developed. Strain energy density from the finite element method was chosen for the indicator for remodeling process. Recursive calculations continued until converged results between FEM and mathematical model. For a osteo-integration example, bone-remodeling process in a implanted tibia of beagle was adapted. Calculated results indicated that the bone densities around screw pitch were increased which indicates firm fixations between the bone and implant. Screw design parameters have an influence on initial stability of the implant rather than remodeling process.

EVALUATION METHOD FOR THE EFFECTIVE LENGTH OF TRAPEZOIDAL-TYPE ELECTROMAGNET (사다리꼴 형태 부상용 전자석의 유효길이 평가 방법)

  • Koo, Dae-Hyun;Kang, Do-Hyun;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.593-596
    • /
    • 1992
  • An evaluation method for the effective length of electromagnet - which bas U-shape in frontview and trapezoidal in side view - is presented. Using 2D FEM, 2 analysing models are introduced for calculating effective length of the magnet ; the front model is using the normalized equi-pole face area of the magnet and the side model using the normalized equi-magnetic circuit. The ratio of the effective length to the length of bottom plate (core) comes out 1.25 - 1.30. In addition, 3D FEM analysis has been done and a proto-type test model is manufactured to verify the analysing method. The ratio by the experiment appears 1.2, which is reasonably in good agreement with the suggested numerical results.

  • PDF

Finite Element Analysis of an Orthogonal Cutting Process with Low Speed (2차원 저속절삭에 대한 유한요소 해석)

  • Kim, Kug-Weon;Ahn, Tae-Kil;Lee, Woo-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.10-15
    • /
    • 2006
  • An introduction to orthogonal cutting model by FEM is given, followed by a review of similar work. The cutting process is treated as quasi-static and strain rate insensitive, so the model is applicable only to low speed cutting operation. Chip separation is accomplished along a predefined cutting path by means of an element death procedure. Contact elements with friction capability are used to model the interaction between the tool and the workpiece. FEM results are compared with cutting experiments with low speed for brass, and good correlations are found.

  • PDF

Optimal Design of Suspension for Micro Optical Disk Drive (마이크로 광디스크 드라이브 서스펜션의 최적 설계)

  • Jeon, Joon-Ho;Chun, Jung-Il;Park, No-Chul;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.570-575
    • /
    • 2002
  • Servo performance of a disk drive is greatly affected by the mechanical resonance frequencies of the head gimbal assembly (HSA). It is important factor to allow broader bandwidths for servo system in improving overall drive performance. In this paper, an optimal design for ODD suspension is attempted to increase resonance frequencies in tracking direction. Initial model was designed and the design parameter was defined to the model. The mode frequency variation for the change of design parameter was observed by modal analysis using the finite element method(FEM). The sensitivity matrix was calculated from the observed data and so through sensitivity analysis, an optimized ODD suspension was designed to have the higher resonant frequency than the initial model.

  • PDF