• 제목/요약/키워드: FEM Formulation

검색결과 229건 처리시간 0.024초

P1P1/P2P1 유한요소 공식을 이용한 배압축성 Navier-Stokes 방정식의 분리 해법에 대한 연구 (Study on the Segregation Algorithms of the Incompressible Navier-Stokes Equations Using P1P1/P2P1 Finite Element Formulation)

  • 최형권;유정열;박재인;조명환
    • 대한기계학회논문집B
    • /
    • 제30권3호
    • /
    • pp.262-269
    • /
    • 2006
  • Segregation algorithms of the incompressible Wavier-Stokes equations using P1P1/P2P1 finite element formulation are newly proposed. P1P1 formulation allocates velocity and pressure at the same nodes, while P2P1 formulation allocates pressure only at the vertex nodes and velocity at both the vertex and the midpoint nodes. For a comparison of both the elapsed time and the accuracy between the two methods, they have been applied to the well-known benchmark problems. The three cases chosen are the two-dimensional steady and unsteady flows around a fixed cylinder, decaying vortex, and impinging slot jet. It is shown that the proposed P2P1 semi-segregation algorithm performs better than the conventional P1P1 segregation algorithm in terms of both accuracy and computation time.

토석류 유동해석을 위한 유한요소 수식화 (FEM Numerical Formulation for Debris Flow)

  • 신호성
    • 한국지반공학회논문집
    • /
    • 제30권10호
    • /
    • pp.55-65
    • /
    • 2014
  • 최근 토석류의 이동 메커니즘에 대한 연구와 거동 예측을 위한 해석 프로그램의 개발이 활발히 진행중이다. 하지만, 토석류를 유체이동으로 간주하는 기존의 프로그램들은 수치적인 안정성과 모델링 그리고 다양한 경계조건의 적용에 대한 제약이 있다. 본 연구에서는 토석류의 유동현상에 대한 연속방정식과 힘평형 방정식에 대하여 깊이적분을 수행하였다. 토체의 두께 h, x와 y 흐름방향의 평균속도 $\bar{u}$, $\bar{v}$를 주변수로 채택하여 흐름이 없는 해석영역에 대한 수치적인 안정성을 확보하였다. DG기법에 의한 가중행렬을 산정하고 유동방향을 고려한 불연속 시험함수를 이용하여 Petrov-Galerkin 수식화를 수행하였다. 그리고 토석류의 유체 및 토립자의 특성을 동시에 고려할 수 있는 역학적 구성모델을 제시하였다. 단일경사 사면에서 사면경사, 토사 유발량, 저면 마찰 저항이 토석류 흐름특성에 미치는 영향을 비교 분석하였다. 그리고 수치해석을 통하여 사면 하부에 설치된 제방의 영향을 분석하였다. 개발된 해석프로그램을 활용하여 토석류 발생예상 지역의 다양한 위험인자에 대한 평가를 수행하고, 피해를 최소화하기 위한 시설물의 설계방안을 제안할 수 있을 것으로 판단된다.

Analysis of shallow footings rested on tensionless foundations using a mixed finite element model

  • Lezgy-Nazargah, M.;Mamazizi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.379-394
    • /
    • 2022
  • Shallow footings usually belonged to the category of thick plate structures. For accurate analysis of thick plates, the contribution of out-of-plane components of the stress tensor should be considered in the formulation. Most of the available shallow footing models are based on the classical plate theories, which usually neglect the effects of the out-of-plane stresses. In this study, a mixed-field plate finite element model (FEM) is developed for the analysis of shallow footings rested on soil foundations. In addition to displacement field variables, the out-of-plane components of the stress tensor are also assumed as a priori unknown variables. For modeling the interaction effect of the soil under and outside of the shallow footings, the modified Vlasov theory is used. The tensionless nature of the supporting soil foundation is taken into account by adopting an incremental, iterative procedure. The equality requirement of displacements at the interface between the shallow footing and soil is fulfilled using the penalty approach. For validation of the present mixed FEM, the obtained results are compared with the results of 3D FEM and previous results published in the literature. The comparisons show the present mixed FEM is an efficient and accurate tool for solving the problems of shallow footings rested on subsoil.

Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection

  • Bas, Selcuk
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.483-492
    • /
    • 2019
  • In the current study, the influence of the initial lateral (sweep) shape and the cross-sectional twist imperfection on the lateral torsional buckling (LTB) response of doubly-symmetric steel I-beams was investigated. The material imperfection (residual stress) was not considered. For this objective, standard European IPN 300 beam with different unbraced span was numerically analyzed for three imperfection cases: (i) no sweep and no twist (perfect); (ii) three different shapes of global sweep (half-sine, full-sine and full-parabola between the end supports); and (iii) the combination of three different sweeps with initial sinusoidal twist along the beam. The first comparison was done between the results of numerical analyses (FEM) and both a theoretical solution and the code lateral torsional buckling formulations (EC3 and AISC-LRFD). These results with no imperfection effects were then separately compared with three different shapes of global sweep and the presence of initial twist in these sweep shapes. Besides, the effects of the shapes of initial global sweep and the inclusion of sinusoidal twist on the critical buckling load of the beams were investigated to unveil which parameter was considerably effective on LTB response. The most compatible outcomes for the perfect beams was obtained from the AISC-LRFD formulation; however, the EC-3 formulation estimated the $P_{cr}$ load conservatively. The high difference from the EC-3 formulation was predicted to directly originate from the initial imperfection reduction factor and high safety factor in its formulation. Due to no consideration of geometric imperfection in the AISC-LFRD code solution and the theoretical formulation, the need to develop a practical imperfection reduction factor for AISC-LRFD and theoretical formulation was underlined. Initial imperfections were obtained to be more influential on the buckling load, as the unbraced length of a beam approached to the elastic limit unbraced length ($L_r$). Mode-compatible initial imperfection shapes should be taken into account in the design and analysis stages of the I-beam to properly estimate the geometric imperfection influence on the $P_{cr}$ load. Sweep and sweep-twist imperfections led to 10% and 15% decrease in the $P_{cr}$ load, respectively, thus; well-estimated sweep and twist imperfections should considered in the LTB of doubly-symmetric steel I-beams.

A local point interpolation method for stress analysis of two-dimensional solids

  • Liu, G.R.;Gu, Y.T.
    • Structural Engineering and Mechanics
    • /
    • 제11권2호
    • /
    • pp.221-236
    • /
    • 2001
  • A local point interpolation method (LPIM) is presented for the stress analysis of two-dimensional solids. A local weak form is developed using the weighted residual method locally in two-dimensional solids. The polynomial interpolation, which is based only on a group of arbitrarily distributed nodes, is used to obtain shape functions. The LPIM equations are derived, based on the local weak form and point interpolation. Since the shape functions possess the Kronecker delta function property, the essential boundary condition can be implemented with ease as in the conventional finite element method (FEM). The presented LPIM method is a truly meshless method, as it does not need any element or mesh for both field interpolation and background integration. The implementation procedure is as simple as strong form formulation methods. The LPIM has been coded in FORTRAN. The validity and efficiency of the present LPIM formulation are demonstrated through example problems. It is found that the present LPIM is very easy to implement, and very robust for obtaining displacements and stresses of desired accuracy in solids.

Semi-analytical solution of horizontally composite curved I-beam with partial slip

  • Qin, Xu-xi;Liu, Han-bing;Wu, Chun-li;Gu, Zheng-wei
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.1-12
    • /
    • 2018
  • This paper presents a semi-analytical solution of simply supported horizontally composite curved I-beam by trigonometric series. The flexibility of the interlayer connectors between layers both in the tangential direction and in the radial direction is taken into account in the proposed formulation. The governing differential equations and the boundary conditions are established by applying the variational approach, which are solved by applying the Fourier series expansion method. The accuracy and efficiency of the proposed formulation are validated by comparing its results with both experimental results reported in the literature and FEM results.

Multi-Domain Structural-Acoustic Coupling Analysis Using the Finite Element and Boundary Element Techniques

  • Ju, Hyeon-Don;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.555-561
    • /
    • 2001
  • A new approach to analyze the multi-domain acoustic system divided and enclosed by flexible structures is presented in this paper. The boundary element formulation of the Helmholtz integral equation is used for the internal fields and the finite element formulation for the structures surrounding the fields. We developed a numerical analysis program for the structural-acoustic coupling problems of the multi-domain system, in which boundary conditions such as the continuity of normal particle velocity and sound pressure in the structural interfaces between Field 1 and Field 2 are not needed. The validity of the numerical analysis program is verified by comparing the numerical results with the experimental ones. Example problems are included to investigate the characteristics of the coupled multi-domain system.

  • PDF

트림 NURBS 곡면의 T-스플라인 유한요소해석 (T-spline FEA for Trimmed NURBS Surface)

  • 김현중;서유덕;윤성기
    • 대한기계학회논문집A
    • /
    • 제33권2호
    • /
    • pp.135-144
    • /
    • 2009
  • In this present work, spline FEA for the trimmed NURBS surface of the 2D linear elasticity problem is presented. The main benefit of the proposed method is that no additional efforts for modeling of trimmed NURBS surfaces are needed and the information of the trimming curves and trimmed surfaces exported from the CAD system can be directly used for analysis. For this, trimmed elements are searched by using NURBS projection scheme. The integration of the trimmed elements is performed by using the NURBS-enhanced integration scheme. The formulation of constructing stiffness matrix of trimmed elements is presented. In this formulation, the information of the trimming curve is used for calculating the Jacobian as well as for obtaining integration points. The robustness and effectiveness of the proposed method are investigated through various numerical examples.

불포화지반에 대한 열-수리-역학 거동의 수식화 (Formulation of fully coupled THM behavior in unsaturated soil)

  • 신호성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.808-812
    • /
    • 2010
  • A great deal of attention is focused on coupled Thermo-Hydro-Mechanical (THM) behavior of multiphase porous media in diverse geo-mechanical and geo-environmental areas. This paper presents general governing equations for coupled THM processes in unsaturated porous media. Coupled partial differential equations are derived from 3 mass balances equations (solid, water, and air), energy balance equation, and force equilibrium equation. Finite element code is developed from the Galerkin formulation and time integration of these governing equations for 4 main variables (displacement $\underline{u}$, gas pressure $P_g$, liquid pressure $P_l$), and temperature T). The code is validated with theoretical solutions for linear material with simple boundary conditions.

  • PDF

유한요소법을 이용한 합체박판 성형공정의 단면해석 (Sectional Analysis of Forming Processes for Tailored Blank Sheets Using Finite Element Method)

  • 구본영;백승준;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.36-39
    • /
    • 1998
  • To predict strain distributions and weld line movements in the forming processes of tailored blank sheets, the 2-dimensional finite element formulation is developed. The welding zone is modelled with the several, narrow finite elements. The material properties of weld elements are calculated from those of base metals, based on the experimental evaluation. To verify the finite element formulation developed, the forming process of an autobody door inner panel section is simulated. FEM predictions are compared and showed good agreements with experimental measurements.

  • PDF