• Title/Summary/Keyword: FEEM

Search Result 10, Processing Time 0.025 seconds

Fate and Characteristics of Dissolved Organic Matters in a Water Reclamation Facility, Korea (하수처리수 재이용시설의 공정별 용존유기물질 거동 및 특성)

  • Kwon, Eun-Kwang;Lee, Wontae
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.355-362
    • /
    • 2021
  • This study investigated the fate of dissolved organic matter (DOM) in a water reclamation facility (WRF) in Korea. The WRF consists of coagulation, sedimentation, microfiltration, and reverse osmosis (RO) components. The production capacity of WRF is 90,000 m3/day. The reclaimed water is reused as industrial water. We also characterized DOM in raw, processed, and finished waters based on analysis of dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UVA254), fluorescence excitation emission matrix (FEEM), and DOC fractions via liquid chromatography-organic carbon detection (LC-OCD). Based on the results of DOC, UVA254, and FEEM analyses, neither the coagulation/sedimentation nor the microfiltration at the WRF effectively removed DOM. The RO process removed more than 94% of DOM. The raw water (i.e., secondary treated effluent obtained from a wastewater treatment plant) exhibited tryptophan-like peaks, which are a promising marker of wastewater, in the FEEM analysis. Coagulation and microfiltration failed to eliminate the wastewater marker, whereas RO completely removed it. The raw water also carried high levels (89.4%) of hydrophilic and low-molecular weight substances, which are difficult to remove via coagulation-sedimentation or microfiltration. Humic substance was a major component of the hydrophilic fractions. Based on the LC-OCD analysis, RO effectively removed the humic and polymeric materials from DOM.

Seasonal Investigation of Natural Organic Matters from Yeongsan River Basin by Fluorescence Spectroscopy (영산강 수계 자연유기물질의 계절별 형광특성 연구)

  • Lee, Dong-Jin;Chon, Kang-Min;Jung, Soo-Jung;Kim, Sang-Don;Lee, Kyung-Hee;Hwang, Tae-Hee;Hwang, Dong-Jin;Lim, Byung-Jin;Cho, Jae-Weon
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.42-51
    • /
    • 2012
  • This study investigated the characteristics of natural organic matter (NOM) with general water characteristics (pH, DO, electrical conductivity, BOD, COD, TN, TP, Chl-$a$, DOC, $UV_{254}$, SUVA) and the 3D fluorescence excitation-emission matrix (FEEM) in the Yeongsan River basin. FEEM was used to classify protein-like and fulvic & humiclike substances with fluorescence intensity in the matrix of excitation and emission wavelength. The concentration of BOD, COD, TN, electrical conductivity and DOC in the region of Gwangju city (Gwangju sewage treatment plant: GJS, Gwangjucheon: GJC, Gwangju 2: GJ2) was relatively higher than the upper reaches and lower reaches of the Yeongsan River basin. SUVA in most sites was lower than 3 L $mg^{-1}\;m^{-1}$ as the hydrophilic substances, except Damyang (DY) in the upper reaches of Yeongsan river was higher than 3 L $mg^{-1}\;m^{-1}$ as the hydrophobic substances during winter and autumn. In the FEEM investigation the fulvic and humic substances were found in most sites, and in sites regarding Gwangju city (GJS, GJC, GJ2) during winter and GJC in summer, protein-like substances were found. The trend of fluorescence intensities from the upper reaches to the lower reaches in most sites corresponded to that regarding the concentration of water characteristics (BOD, COD, TN, DOC). That is why the region of Gwangju city (GJS, GJC, GJ2) was relatively higher. This results were an equivalent trend to those of fluorescence index (FI) in most sites, and the higher FIs in the sites of Gwangju city indicate more microbial-derived substances due to enormous effluent organic matters (EfOM) from huge Gwangju sewage treatment plants.

Evaluation on Chemical Cleaning Efficiency of Fouled in $1,000,000m^3/day$ Sea Water Reverse Osmosis Membrane Plant (해수용 역삼투막을 이용한 $1,000,000m^3/day$ 규모의 플랜트에서 오염된 막의 화학세정 효율 평가)

  • Park, Jun-Young;Kim, Ji-Hoon;Jeong, Woo-Won;Nam, Jong-Woo;Kim, Young-Hoon;Lee, Eui-Jong;Lee, Yong-Soo;Jeon, Min-Jung;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.285-291
    • /
    • 2011
  • Membrane fouling is an unavoidable phenomenon and major obstacle in the economic and efficient operation under sea water reverse osmosis (SWRO). When fouling occurs on the membrane surface, the permeate quantity and quality decrease, the trans-membrane pressure (TMP) and operation costs increase, and the membrane may be damaged. Therefore, chemical cleaning process is important to prevent permeate flow from decreasing in RO membrane filtration process. This study focused on proper chemical cleaning condition for Shuaibah RO plant in Saudi Arabia. Several chemical agents were used for chemical cleaning at different contact time and concentrations of chemicals. Also autopsy analysis was performed using LOI, FT-IR, FEEM, SEM and EDX for assessment of fouling. Specially, FEEM analysis method was thought as analyzing and evaluating tool available for selection of the first applied chemical cleaning dose to predict potential organic fouling. Also, cleaning time should be considered by the condition of RO membrane process since the cleaning time depends on the membrane fouling rate. If the fouling exceeds chemical cleaning guideline, to perfectly remove the fouling, certainly, the chemical cleaning is increased with membrane fouling rate influenced by raw water properties, pre-treatment condition and the point of the chemical cleaning operation time. Also choice of cleaning chemicals applied firstly is important.

Evaluation on Chemical Cleaning Efficiency of Organic-fouled SWRO Membrane in Seawater Desalination Process (해수담수화 공정에서 역삼투막의 유기 막오염에 대한 SWRO 막의 화학세정 효율 평가)

  • Park, Jun-Young;Hong, Sung-Ho;Kim, Ji-Hoon;Jeong, Woo-Won;Nam, Jong-Woo;Kim, Young-Hoon;Jeon, Min-Jung;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.177-184
    • /
    • 2011
  • Membrane fouling is an unavoidable phenomenon in operation of seawater reverse osmosis (SWRO) and major obstacle for economic and efficient operation. When fouling occurs on the membrane surface, the permeate flux is decreased, on the contrary, the trans-membrane pressure (TMP) is increased, therefore operation and maintaining costs and potential damage of membranes are able to the pivotal risks of the process. Chemical cleaning process is essential to prevent interruptions for effective RO membrane filtration process. This study focused on proper chemical cleaning condition for polyamide RO membranes of 4 companies. Several chemical agents were applied for chemical cleaning under numbers of operating conditions. Additionally, a monitoring tool of FEEM as autopsy analysis method is adapted for the prediction of organic bio-fouling.

Physicochemical and Toxicological Properties of Effluent Organic Matters from Sewage and Industrial Treatment Plants (하폐수처리장 유래 방류수유기물질의 물리화학적 및 독성학적 특성)

  • Yoo, Jisu;Lee, Bomi;Hur, Jin;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.80-86
    • /
    • 2014
  • Unlike to natural organic matters (NOMs), effluent organic matters (EfOMs) are not well understood due to their complexity and heterogeneity. In this study, EfOMs from sewage and industrial wastewater treatment effluents and Suwannee River NOM (SRNOM) were isolated into hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions. Specific ultraviolet absorbance (SUVA) and fluorescence excitation emission matrix (FEEM) analyses were used to characterize physicochemical properties. In addition, acute toxicity and oxidative stress to Daphnia magna were evaluated to characterize toxicological properties. EfOMs showed similar properties to microbially derived organic matters having low hydrophobicity, which are totally different from SRNOM having high hydrophobicity. Moreover, acute toxicity and antioxidant enzyme activity in D. magna was largely dependent on fraction types of EfOMs. These findings suggest that EfOMs have different physicochemical and toxicological properties compared with those of NOMs, which needs to be further identified with various sources of EfOMs.

Removal characteristics of organic matter during pretreatment for membrane-based food processing wastewater reclamation

  • Jang, Haenam;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2018
  • In this study, we investigated coagulants such as polyaluminum chloride (PACl) and ferric chloride ($FeCl_3$) and the combination of a coagulant and powdered activated carbon (PAC) for the removal of dissolved organic matter (DOM) from fish processing effluent to reduce membrane fouling in microfiltration. The efficiency of each pretreatment was investigated through analyses of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$). Membrane flux and silt density index (SDI) analyses were performed to evaluate membrane fouling; molecular weight distributions (MWD) and fluorescence excitation-emission matrix (FEEM) spectroscopy were analyzed to assess DOM characteristics. The results demonstrated that $FeCl_3$ exhibited higher DOC and $UVA_{254}$ removals than PACl for food processing effluent and a combination of $FeCl_3$ and PAC provided comparatively better results than simple $FeCl_3$ coagulation for the removal of DOM from fish processing effluent. This study suggests that membrane fouling could be minimized by proper pretreatment of food processing effluent using a combination of coagulation ($FeCl_3$) and adsorption (PAC). Analyses of MWD and FEEM revealed that the combination of $FeCl_3$ and PAC was more efficient at removing hydrophobic and small-sized DOM.

Recovery and Characterization of Lactic Acid from Fermentation Broth Using Chemical Precipitation (화학침전을 이용한 발효액의 젖산 회수 및 유기물 특성분석)

  • Lee, Wontae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2018
  • Recovery of lactic acid from fermentation broth using chemical precipitation was investigated with various chemicals. Effects of chemical types, mixing speeds, settling duration, and solvent addition were evaluated to improve the recovery rates of lactic acid. Overall, recovery efficiencies increased as the dosage of chemicals increased. Recovery rate of lactic acid by CaO was higher than those of $Ca(OH)_2$ and $CaCO_3$. Recovery of lactic acid increased by 48% under the optimized reaction conditions which included a mixing speed at 180 rpm, a settling duration of 24 h, and addition of ethanol at 25%(v/v). Practical application needs to consider types and concentrations of other organic acids as well as lactic acid. Based upon the results of fluorescence excitation emission matrix (FEEM), size exclusion chromatography (SEC), characteristics of recovered lactic acid were same as that in the fermentation broth.

Removal Characteristics of Organic Matters in Pretreatment and Reverse Osmosis Membrane Processes for Seawater Desalination (해수담수화 전처리 및 역삼투막여과 공정의 유기물 제거특성)

  • Kim, Dong-Kwan;Choi, June-Seok;Lee, Chang-Kyu;Kim, Jinho;Choi, Jeong-Hak;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.492-497
    • /
    • 2014
  • This study investigated removal characteristics of organic matters in pretreatment and reverse osmosis (RO) membrane processes for seawater desalination. Also, the influence of the changes in characteristics of organic matters on the membrane fouling was assessed. The pretreatment processes included dual media filtration (DMF), pressurized membrane filtration (MF), and submerged membrane filtration (SMF). Turbidity, UV absorption at 254 nm, dissolved organic carbon, size exclusion chromatography (SEC), fluorescence excitation emission matrix (FEEM), and transparent exopolymer particles (TEP) in raw and processed waters were analyzed. Ions and minerals were not removed by any pretreatment process tested, but were removed over 99% through the RO membrane process. Hydrophobic organics, which can play major role in organic membrane fouling, were relatively readily removed compared with hydrophilic ones. Membrane based pretreatment such as MF and SMF exhibited better removals of organics than conventional DMF. As the levels of organics in pretreated water decreased, the silt density index (SDI) decreased. MF treated water exhibited the lowest SDI value; this is possibly due to the lowest TEP ($0.1-0.4{\mu}m$) concentrations.

A study on mitigation of membrane fouling by ozonation/coagulation in ultrafiltration (오존산화/응집 혼성공정에 의한 UF 분리막의 막오염 저감에 관한 연구)

  • Kim, Geon-Youb;Kim, Min-Gue;Lee, Chang-Ha;Kim, Hyung-Soo;Kim, Ji-Hoon;Lee, Kyung-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.2
    • /
    • pp.161-168
    • /
    • 2017
  • Microfiltration (MF) and Ultrafiltration (UF) membrane processes capable of producing highly purified water have been extensively applied as a pretreatment process in the wastewater reuse field with the improvement of membrane properties and resistance, development of operating protocols, and improvement of technologies of backwashing and physicochemical cleaning, and improvement of scale and antifoulants. However, despite of the development of membrane production and process technologies, fouling still remains unresolved. This study confirmed that foulants such as polysaccharides, proteins and humic substances existed in final treated effluent (secondary effluent) by fluorescence excitation emission matrix (FEEM) and fourier transform infrared spectroscopy (FTIR) analysis. In addition, when constructing ozone oxidation and coagulation processes as a hybrid process, the removal efficiency was 5.8%, 6.9%, 5.9%, and 28.2% higher than that of the single process using coagulation in turbidity, color, dissolved organic carbon (DOC), and UV254, respectively. The reversible and irreversible resistances in applying the hybrid process consisting of ozone oxidation and coagulation processes were lower than those in applying ozone oxidation and coagulation processes separately in UF membrane process. Therefore, it is considered possible to apply ozonation/coagulation as a pretreatment process for stable wastewater reuse by and then contributing to the reduction of fouling when calculating the optimal conditions for ozone oxidation and coagulation and then to applying them to membrane processes.

Formation Characteristics and Control of Disinfection Byproducts in a Drinking Water Treatment Plant Using Lake Water (호소수를 원수로 사용하는 정수장의 소독부산물 생성 특성 및 제어 방안)

  • Lee, Kichang;Gegal, Bongchang;Choi, Ilhwan;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.269-276
    • /
    • 2015
  • This study investigated the influence of characteristics of natural organic matter (NOM) on the formation of disinfection by-products (DBPs), and proposed the control strategies of DBPs formation in a drinking water treatment plant using lake water in Gyeongsangbuk-do. The fluorescence excitation-emission matrix analysis results revealed that the origins of NOM in raw waters to the plant were a mixture of terrestrial and microbial sources. Molecular size distributions and removals of NOM fractions were evaluated with a liquid chromatography-organic carbon detector (LC-OCD) analysis. Humic substances and low molecular weight organics were dominant fractions of NOM in the raw water. High molecular weight organics were relatively easier to remove through coagulation/precipitation than low molecular weight organics. The concentrations of DBPs formed by pre-chlorination increased through the treatment processes in regular sequence due to longer reaction time. Chloroform (74%) accounts for the largest part of trihalomethanes, followed by bromodichloromethane (22%) and dibromochloromethane (4%). Dichloroacetic acid (50%) and trichloroacetic acid (48%) were dominant species of haloacetic acids, and brominated species such as dibromoacetic acid (2%) were minimal or none. Dichloroacetonitrile (60%) accounts for the largest part of haloacetonitriles, followed by bromochloroacetonitrile (30%) and dibromoacetonitrile (10%). The formation of DBPs were reduced by 16~44% as dosages of pre-chlorine decreased. Dosages of pre-chlorine was more contributing to DBPs formation than variations of dissolved organic contents or water temperature.