• Title/Summary/Keyword: FEA program

Search Result 142, Processing Time 0.021 seconds

A Study on Structural Analysis for Stability Evaluation According to Design Parameters of a Fire Ladder Vehicle (소방 고가사다리차의 설계 변수에 따른 안정성 평가를 위한 구조해석 연구)

  • Jung, Hoon;Kim, Cheol-Jung;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.64-72
    • /
    • 2020
  • In this study, a stability analysis was conducted through finite element analysis (FEA) of a simplified model of a fire ladder truck by changing the ascending angle, turning angle, and boundary conditions between the outrigger and the ground. The results of the analysis showed that decreasing the angle of the ladder car increases the moment due to the ladder weight, decreasing the safety factor despite being under the same load conditions. In the case of a rotating radius, the stability was found to vary depending on the boundary conditions. A comparative analysis in the future with these results and the experimental values from the actual fire ladder truck may determine the most appropriate boundary conditions based on the analysis program. It is expected to predict the risk of damage and rollover by assessing the stability of aerial ladder vehicles under different conditions.

Process Analysis and Test for Manufacturing the Sleeve Spring Type-Torsional Vibration Damper (슬리브 스프링 형식 비틀림 진동감쇠기 제조를 위한 공정해석 및 시험)

  • Hwang, Beom-Cheol;Bae, Won-Byong;Jang, Young-Jun;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1471-1481
    • /
    • 2009
  • In diesel engines, it is inevitable that the torsional vibration is produced by the fluctuation of engine torque. Therefore, it is necessary to establish preventive measures to diminish the torsional vibration. The sleeve spring type damper is one of the preventive measures for reducing the torsional vibration. In this study, the closed form equations to predict the spring constant of a sleeve spring and the torsional characteristics of the torsional vibration damper are proposed to calculate stiffness of the damper and verified their availability through the finite element analysis and experiments. And the stability of the sleeve spring torsional vibration damper is verified by analyzing the inner star and outer star, which are the core parts of the damper, and 2-roll bending process is proposed to manufacture sleeve spring. The program to calculate the initial radius including spring-back effect is developed, and the FEA method to analyze elasto-plastic problem was verified through analysis of 90$^{\circ}$bending process. The results of the analysis are in good agreements with those of the experiments. The newly proposed method can be used as an advanced technique that remarkably curtails cost of production and replaces the conventional forming.

P-S Characteristics for End-bearing Pile in Granular Material (사질토 지반에서 선단지지말뚝의 P-S 특성)

  • Lee Yong Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.85-91
    • /
    • 2005
  • This paper investigates P-S (load-settlement) relationship for the end-bearing Pile in granular material using the CRISP FE Program with the laboratory 2D model pile load test. In order to simulate the effect of end-bearing pile problem in the FEA, the author adopts several forms of slip element around the pile length and the pile tip. Through this study it was found that e degree of non-associated Plastic flow rule incoporated into the Mohr-Coulomb model for the end-bearing pile with the slip elements was a dominant factor in terms of numerical solution convergence. In contrast, the roller boundary used along the pile shaft showed a smooth convergence with respect to the degree of non-associated plastic flow rule.

Vibration-based damage alarming criteria for wind turbine towers

  • Nguyen, Cong-Uy;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.221-236
    • /
    • 2017
  • In this study, the feasibility of vibration-based damage alarming algorithms are numerically evaluated for wind turbine tower structures which are subjected to harmonic force excitation. Firstly, the algorithm of vibration-based damage alarming for the wind turbine tower (WTT) is visited. The natural frequency change, modal assurance criterion (MAC) and frequency-response-ratio assurance criterion (FRRAC) are utilized to recognize changes in dynamic characteristics due to a structural damage. Secondly, a finite element model based on a real wind turbine tower is established in a structural analysis program, Midas FEA. The harmonic force is applied at the rotor level as presence of excitation. Several structural damage scenarios are numerically simulated in segmental joints of the wind turbine model. Finally, the natural frequency change, MAC and FRRAC algorithm are employed to identify the structural damage occurred in the finite element model. The results show that these criteria could be used as promising damage existence indicators for the damage alarming in wind turbine supporting structures.

A Study on Parameters Measured during Small Punch Creep Testing (소형펀치 크리프 시험중 측정하는 변수에 대한 연구)

  • Park, Tae-Gyu;Sim, Sang-Hun;Yun, Gi-Bong;Jang, Chang-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.171-178
    • /
    • 2002
  • An effect is made in this study to deepen understanding of small punch(SP) creep testing which has been a round for about 10 years as a substitute for the conventional uniaxial creep testing. Even though considerable numbers of SP creep test program have been performed, most of the tests were aimed at measuring creep rupture lives only. Very flew studies showed interest on the meaning of what we were really measuring during the SP creep tests. In this paper meanings of the parameters measured during the SP creep testing, such as punch load and punch displacement rate are investigated using finite element analysis. It was shown that the measured parameters must represent the stress and strain rates of the material at the annular region located at about 0.65 mm from the center of the SP specimen. The material in this location would go through constant maximum stress and strain rate during the testing. Experimental verification is also discussed.

An Analysis of Static and Dynamic Behavior of the HSK Tooling System According to Bearing Characteristics (베어링특성에 따른 HSK 공구시스템의 정적 및 동적 거동의 유한요소해석)

  • Park, Jin-Hyo;Kim, Jeong-Suk;Ku, Min-Su;Kang, Ik-Soo;Kim, Ki-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.346-352
    • /
    • 2010
  • Recently, the high-tech industries, such as the aerospace industry, the auto industry, and the electronics industry, are growing up considerably. Because of that, high machining accuracy and productivity of precision parts have been required. The tooling system is important part in the machining center. HSK tooling system is more suitable than BT tooling system for that of high speed machining center. It is because static stiffness and machining accuracy of HSK tooling system are higher than those of BT tooling system. In this paper, static and dynamic behavior of the HSK tooling System is analyzed according to bearing characteristics and lightweight parts. In order that, three different models of the HSK tooling system are modelled by using a 3D modeling/design program. More stable one in the models of HSK tooling system can be selected by using the FEA(Finite Element Analysis).

Design optimization of pressure vessel of Small Autonomous Underwater Vehicle (심해 자율 무인잠수정(AUV)의 내압선체 설계 최적화)

  • Chung, Tae-Hwan;Nho, In-Sik;Lee, Pan-Mook;Lee, Chong-Moo;Lim, Yong-Gon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.43-47
    • /
    • 2003
  • This paper presents the optimum design of cylindrical shell under external pressure loading. Two kinds of material, AI7075-T6, Ti-6AI-4V, are considered. For each material, the design variable is a thickness of the unstiffened parallel middle body shell, and the state variable, constraint, is hoop stress and the object function is total weight of the cylindrical shell. Optimization is performed by conventional FE Program, ANSYS. In addition, buckling analysis is performed for the middle body of the cylindrical shell. Finally, we calculates the payload of the cylindrical shell to keep neutral buoyancy with optimized thickness in deep-sea applications.

  • PDF

Optimal Structural Design of a Tonpilz Transducer Considering the Characteristic of the Impulsive Shock Pressure (충격 특성을 고려한 Tonpilz 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.987-994
    • /
    • 2008
  • The optimal structure of the Tonpilz transducer was designed. First, the FE model of the transducer was constructed, that included all the details of the transducer which used practical environment. The validity of the FE model was verified through the impedance analysis of the transducer. Second, the resonance frequency, the sound pressure, the bandwidth, and the impulsive shock pressure of the transducer in relation to its structural variables were analyzed. Third, the design method of $2^n$ experiments was employed to reduce the number of analysis cases, and through statistical multiple regression analysis of the results, the functional forms of the transducer performances that could consider the cross-coupled effects of the structural variables were derived. Based on the all results, the optimal geometry of the Tonpilz transducer that had the highest sound pressure level at the desired working environment was determined through the optimization with the SQP-PD method of a target function composed of the transducer performance. Furthermore, for the convenience of a user, the automatic process program making the optimal structure of the acoustic transducer automatically at a given target and a desired working environment was made. The developed method can reflect all the cross-coupled effects of multiple structural variables, and can be extended to the design of general acoustic transducers.

Displacement Characteristics of the Square-frame Ultrasonic Motor (정사각틀 초음파 모터의 변위 특성)

  • Kim, Jong-Wook;Park, Choong-Hyo;Lim, Jung-Hoon;Jeong, Seong-Su;Kim, Myong-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.733-738
    • /
    • 2011
  • A novel design of a simple square-frame USM (ultrasonic motor) was proposed. The stator of the motor consists of a square-frame shape elastic body and four rectangular plate ceramics. The four ceramics were attached to inner surfaces of the square frame elastic body. The same phase voltages were applied to the ceramics on horizontal surfaces, and 90 degree phase difference voltage were applied to the ceramics on vertical surfaces. To find a model that generates elliptical motion at outside of the stator, the finite element analysis program ATILA was used. The analyzed results were compared to the experimental results. As result, the model EL10EH3ET0.5CL4 which generates the maximum elliptical displacement was chosen by analyzing the resonance mode according to changes in frequency.

A Study on the Vibration Reduction by the Position of Borehole using Experimental Waveform and Finite Element Analysis (실측파형과 유한요소해석을 통한 방진구의 위치별 진동 저감 연구)

  • Song, Jeong-Un;Kim, Seung-Kon;Park, Hoon;Hong, Woong-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.381-387
    • /
    • 2013
  • In order to improve the environmental vibration, it is necessary to method for not only reduce the vibration source, but also control the vibration path. In this study, we used borebole for estimate the vibration reduction. And also, we analyzed displacement and vibration velocity caused by the position of borehole as well as the condition of borehole in ground structure. Visual FEA(Finite Element Analysis) program was used in this numerical analysis. The results are as follows : The displacement magnitude and X, Y direction displacement were represented to different results due to the condition and position of borehole, and were represented to the lowest values when the position of borehole is the most close condition from the vibration source. And also, the vibration velocity was decreased as using borebole in ground structure. The isolation efficiency of the vibration was calculated to maximum 18.40% when borehole was established to the most close position from the vibration source and the receive point.