• Title/Summary/Keyword: FEA Model

Search Result 547, Processing Time 0.022 seconds

A study on automation of modal analysis of a spindle system of machine tools using ANSYS (ANSYS를 활용한 공작기계 주축 시스템의 진동 모드 해석 자동화에 관한 연구)

  • Lee, Bong-Gu;Choi, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2338-2343
    • /
    • 2015
  • An analytical model was developed in this study and then implemented into a tool for automation of FEA (Finite Element Analysis) of a spindle system for natural frequencies and modes in the universal FEA software, ANSYS. VBA of EXCEL was used for the implementation. It allowed graphic user interfaces (GUIs) to be developed for a user to interact with the tool and, in addition, an EXCEL spreadsheet to be used for data arrangement. A code was developed in the language of ANSYS to generate the geometric model of the spindle system, sequentially to construct the analytical model based on the information in the GUIs, and finally to perform computation for the FEA. Its automation of the model generation and analysis can help to identify a near optimal design of the spindle system under design in minimum time and efforts.

Analysis of Cracking Characteristics with Indenter Geometry Using Cohesive Zone Model (Cohesive Zone Model을 이용한 압입자 형상에 따른 균열특성분석)

  • Hyun, Hong Chul;Lee, Jin Haeng;Lee, Hyungyil;Kim, Dae Hyun;Hahn, Jun Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1453-1463
    • /
    • 2013
  • In this study, we investigated the effect of the indenter geometry on the crack characteristics by indentation cracking test and FEA. We conducted various cohesive finite element simulations based on the findings of Lee et al. (2012), who examined the effect of cohesive model parameters on crack size and formulated conditions for crack initiation and propagation. First, we verified the FE model through comparisons with experimental results that were obtained from Berkovich and Vickers indentations. We observed whether nonsymmetrical cracks formed beneath the surface during Berkovich indentation via FEA. Finally, we examined the relation between the crack size and the number of cracks. Based on this relation and the effect of the indenter angle on the crack size, we can predict from the crack size obtained with an indenter of one shape (such as Berkovich or Vickers) the crack size for an indenter of different shape.

The Pattern of Initial Displacement in Lingual Lever Arm Traction of 6 Maxillary Anterior Teeth According to Different Material Properties: 3-D FEA (유한요소모델에서 레버암을 이용한 상악 6전치 설측 견인 시 초기 이동 양상)

  • Choi, In-Ho;Cha, Kyung-Suk;Chung, Dong-Hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.213-230
    • /
    • 2008
  • The aim of this study was to analyze the initial movement and the stress distribution of each tooth and periodontal ligament during the lingual lever-arm retraction of 6 maxillary incisors using FEA. Two kinds of finite element models were produced: 2-properties model (simple model) and 24-properties model (multi model) according to the material property assignment. The subject was an adult male of 23 years old. The DICOM images through the CT of the patient were converted into the 3D image model of a skull using the Mimics (version 10.11, Materialise's interactive Medical Image Control System, Materialise, Belgium). After series of calculating, remeshing, exporting, importing process and volume mesh process was performed, FEA models were produced. FEA models are consisted of maxilla, maxillary central incisor, lateral incisor, canine, periodontal ligaments and lingual traction arm. The boundary conditions fixed the movements of posterior, sagittal and upper part of the model to the directions of X, Y, Z axis respectively. The model was set to be symmetrical to X axis. Through the center of resistance of maxilla complex, a retraction force of 200g was applied horizontally to the occlusal plane. Under this conditions, the initial movements and stress distributions were evaluated by 3D FEA. In the result, the amount of posterior movement was larger in the multi model than in the simple model as well as the amount of vertically rotation. The pattern of the posterior movement in the central incisors and lateral incisors was controlled tipping movement, and the amount was larger than in the canine. But the amount of root movement of the canine was larger than others. The incisor rotated downwardly and the canines upwardly around contact points of lateral incisor and canine in the both models. The values of stress are similar in the both simple and multi model.

Development of Computer Aided 3D Model From Computed Tomography Images and its Finite Element Analysis for Lumbar Interbody Fusion with Instrumentation

  • Deoghare, Ashish;Padole, Pramod
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • The purpose of this study is to clarify the mechanical behavior of human lumbar vertebrae (L3/L4) with and without fusion bone under physiological axial compression. The author has developed the program code to build the patient specific three-dimensional geometric model from the computed tomography (CT) images. The developed three-dimensional model provides the necessary information to the physicians and surgeons to visually interact with the model and if needed, plan the way of surgery in advance. The processed data of the model is versatile and compatible with the commercial computer aided design (CAD), finite element analysis (FEA) software and rapid prototyping technology. The actual physical model is manufactured using rapid prototyping technique to confirm the executable competence of the processed data from the developed program code. The patient specific model of L3/L4 vertebrae is analyzed under compressive loading condition by the FEA approach. By varying the spacer position and fusion bone with and without pedicle instrumentation, simulations were carried out to find the increasing axial stiffness so as to ensure the success of fusion technique. The finding was helpful in positioning the fusion bone graft and to predict the mechanical stress and deformation of body organ indicating the critical section.

Design of Capacitive Sensors for Blood Vessel Condition Using FEA Simulation; For Developing of an Implantable Telemetry System to Monitoring the Arterial Change (FEA 시뮬레이션을 이용한 혈관 상태 측정용 커패시티브 센서 설계; 체내 동맥 혈관 변화 모니터링이 가능한 이식형 텔레메트리 시스템 개발을 위한)

  • Kang, So Myoung;Lee, Jae Ho;Wei, Qun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1280-1287
    • /
    • 2019
  • For developing a wireless implantable device to monitoring the artery variation in real-time. The concept of a special vessel variation measurement capacitive sensor is presented in this paper. The sensor consists of two part; main sensor to measuring the arterial variation, and reference sensor is used to improve the accuracy of the capacitance value variation. Before sensor manufacture, a model of the sensor attached on the artery was designed in 3D to conduct in the FEA simulation to validate the validity and feasibility of the idea. The artery model was designed as layered structures and made of collagenous soft tissues with intima inside, followed by the media and the adventitia. Also, a grease layer was designed in the inner of the arterial wall to imitate the clogged arteries. The simulation was divided into two parts; sensor performance test by changing the diameter of the grease layer, and arterial wall tension test by changing the blood pressure. As the simulation results, the capacitance value measured by the proposed sensor is decreased follow the diameter of the grease increased. Also, large elastic deformation of the arterial wall since changing the blood pressure has been observed.

Failure estimation of the composite laminates using machine learning techniques

  • Serban, Alexandru
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.663-670
    • /
    • 2017
  • The problem of layup optimization of the composite laminates involves a very complex multidimensional solution space which is usually non-exhaustively explored using different heuristic computational methods such as genetic algorithms (GA). To ensure the convergence to the global optimum of the applied heuristic during the optimization process it is necessary to evaluate a lot of layup configurations. As a consequence the analysis of an individual layup configuration should be fast enough to maintain the convergence time range to an acceptable level. On the other hand the mechanical behavior analysis of composite laminates for any geometry and boundary condition is very convoluted and is performed by computational expensive numerical tools such as finite element analysis (FEA). In this respect some studies propose very fast FEA models used in layup optimization. However, the lower bound of the execution time of FEA models is determined by the global linear system solving which in some complex applications can be unacceptable. Moreover, in some situation it may be highly preferred to decrease the optimization time with the cost of a small reduction in the analysis accuracy. In this paper we explore some machine learning techniques in order to estimate the failure of a layup configuration. The estimated response can be qualitative (the configuration fails or not) or quantitative (the value of the failure factor). The procedure consists of generating a population of random observations (configurations) spread across solution space and evaluating using a FEA model. The machine learning method is then trained using this population and the trained model is then used to estimate failure in the optimization process. The results obtained are very promising as illustrated with an example where the misclassification rate of the qualitative response is smaller than 2%.

Seismic behavior and failure modes of non-ductile three-story reinforced concrete structure: A numerical investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Sosa, Lisha;Chan, Li-Yin;Haryanto, Yanuar
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.457-472
    • /
    • 2021
  • Reinforced concrete (RC) buildings in Taiwan have suffered failure from strong earthquakes, which was magnified by the non-ductile detailing frames. Inadequate reinforcement as a consequence of the design philosophy prior to the introduction of current standards resulted in severe damage in the column and beam-column joint (BCJ). This study establishes a finite element analysis (FEA) of the non-ductile detailing RC column, BCJ, and three-story building that was previously tested through a tri-axial shaking table test. The results were then validated to laboratory specimens having the exact same dimensions and properties. FEA simulation integrates the concrete damage plasticity model and the elastic-perfectly plastic model for steel. The load-displacement responses of the column and BCJ specimens obtained from FEA were in a reasonable agreement with the experimental curves. The resulting initial stiffness and maximum base shear were found to be a close approximation to the experimental results. Also, the findings of a dynamic analysis of the three-story building showed that the time-history data of acceleration and displacement correlated well with the shaking table test results. This indicates the FEA implementation can be effectively used to predict the RC frame performance and failure mode under seismic loads.

Design Methodology of Main Bearing Cap by a Finite Element Analysis (베어링 캡 유한 요소 해석 설계 방법)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • Main bearing cap is one of the essential structural elements in internal combustion engine. Main bearing cap guides and holds the crankshaft, withstanding the full combustion and inertia loads of the engine. A seamless design methodology using FEA has been proposed to produce a reliable design of main bearing cap. A Levy's thick cylinder model was applied to calculate the contact pressure between bearing shell and housing bore. A calculated contact pressure at housing bore is within the allowed limit comparing with that from bearing shell model. An adequate FEA model was suggested to obtain reliable solutions for the durability of main bearing cap. 3D global model consists of engine bulkhead, main bearing cap, and bolts. Sub-model consisting of cap and part of bolts is used to get detailed solution of main bearing cap. A very careful contact modeling practice is needed to resolve the convergence problems frequently encountering during combined geometric and material non-linear problems. A proposed methodology has been applied to the main bearing cap model successfully and obtained reliable stress results and fatigue safety factors.

Fatigue Characteristics of Engine Rubber Mount for Automotive (자동차용 엔진 마운트의 피로거동에 관한 연구)

  • Suh, Chang-Min;Oh, Sang-Yeob;Park, Dae-Kyu;Jang, Ju-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.45-53
    • /
    • 2009
  • In this study, Finite Element Analysis (FEA) was used to decide three kinds of material property of vibration proof rubber with the unique characteristic of non-linear and large deformation. As well, three types of hardness (Hs 50, 55, 60) were compared with the result of fatigue tests, fatigue life was able to be predicted. The request for fatigue life becomes strict more and more as increasing stress under conditions like a compaction, high load and high temperature for parts because it is main characteristics of rubber mount for automotive. Regarding to the fatigue life under dynamic deformation condition, it can be predicted as checking forced deformation extends and its frequency and its strain-life curve. As for material property tests of uniaxial tension test, uniaxial compression test, pure shear test, Ogden model was used for FEA by observing relations between stress and strain's rate as curve fitting. As a result of FEA, fatigue life for rubber mount was predicted and accorded well with the experimental data of fatigue test with hourglass specimens. In addition, its property of the predictable fatigue life method suggested in this study was accorded well with the experimental data by comparing the predicted fatigue life of FEA with the result of fatigue test for rubber component of engine rubber mount.

Modeling of the Temperature-Dependent and Strain Rate-Dependent Dynamic Behavior of Glass Fiber-Reinforced Polyurethane Foams (유리 섬유 강화 폴리우레탄 폼의 온도 및 변형률 속도 의존 재료 거동 모델링)

  • Lee, Dong-Ju;Shin, Sang-Beom;Kim, Myung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.547-555
    • /
    • 2019
  • The purpose of this study was to establish a numerical model of polyurethane foam (PUF) to simulate the dynamic response and strength of membrane-type Liquefied natural gas (LNG) Cargo containment system (CCS) under the impact load. To do this, initially, the visco-plastic behavior of PUF was characterized by testing the response of the PUF to the impact loads with various strain rates as well as PUF densities at room temperature and at cryogenic conditions. A PUF material model was established using the test results of the material and the FE analysis. To verify the validation of the established material model, simulations were performed for experimental applications, e.g., the dry drop test, and the results of FEA were compared to the experimental results. Based on this comparison, it was found that the dynamic response of PUF in dry drop tests, such as the reaction force and fracture behaviors, could be simulated successfully by the material model proposed in this study.