• Title/Summary/Keyword: FEA(Finite Element Analysis)

Search Result 1,113, Processing Time 0.023 seconds

The Estimation of Buckling Load of Pressurized Unstiffened Cylindrical Shell Using the Hybrid Vibration Correlation Technique Based on the Experimental and Numerical Approach (실험적/수치적 방법이 혼합된 VCT를 활용한 내부 압력을 받는 원통형 쉘의 좌굴 하중 예측)

  • Lee, Mi-Yeon;Jeon, Min-Hyeok;Cho, Hyun-Jun;Kim, Yeon-Ju;Kim, In-Gul;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.701-708
    • /
    • 2022
  • Since the propellant tank structure of the projectile is mainly subjected to a compressive force, there is a high risk of damage due to buckling. Large and lightweight structures such as propellant tank have a complex manufacturing process. So it requires a non-destructive test method to predict buckling load to use the structure after testing. Many studies have been conducted on Vibration Correlation Technique(VCT), which predicts buckling load using the relationship between compressive load and natural frequency, but it requires a large compressive load to predict the buckling load accurately, and it tends to decrease prediction accuracy with increasing internal pressure in structure. In this paper, we analyzed the causes of the decrease in prediction accuracy when internal pressure increases and proposed a method increasing prediction accuracy under the low compressive load for being usable after testing, through VCT combined testing and FEA result. The prediction value by the proposed method was very consistent with the measured actual buckling load.

A 3-dimensional finite element analysis of tapered internal connection implant system (Avana SS $III^{(R)}$) on different abutment connections (경사형 내부연결 임플란트 시스템 (SS $III^{(R)}$)에서 지대주 형태에 따른 응력분포의 3차원 유한요소 분석)

  • Lee, Hye-Sung;Kim, Myung-Rae;Park, Ji-Man;Kim, Sun-Jong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.3
    • /
    • pp.181-188
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the stress distribution characteristics of four different abutment connections on SS-$III^{(R)}$ fixture under occlusal loading, using 3-dimensional finite element method. Materials and methods: The fixture of SS-$III^{(R)}$ (Osstem, Korea) with 4 mm diameter and 11.5 mm length and 4 types of abutments were analyzed; Solid, Com-Octa, ComOcta Gold, and Octa abutment. The models were placed in the area of first molar in the mandible. The 4 loading conditions were; (1) the vertical loading of 100 N on the central fossa, (2) the vertical loading of 100 N on the buccal cusp, (3) the $30^{\circ}$ inclined loading of 100 N to lingual side on the central fossa, and (4) the $30^{\circ}$ inclined loading of 100 N to the lingual side on the buccal cusp. The 3G.Author program was used, the von-Mises stress was calculated and the stress contours were plotted on each part of the implant systems and the surrounding bone structures. Results: Regardless of abutment types and loading conditions, higher stress concentration was observed at the cortical bone. In cancellous bone, the highest stress was observed at apical portion and the maximum stress occurred at the implant neck. The higher internal stress was observed in the fixtures than in the bone. The lowest stress was observed at loading condition 1 and the stress concentration was also lower than any other loading conditions. Conclusion: Within the limitation of the result of this study, it seems that the abutment connection type does not affect much on the stress distribution of bone structure.

Influence of bone loss pattern on stress distribution in bone and implant: 3D-FEA study (주변 골흡수 양상에 따른 임플란트와 골의 응력분산에 관한 유한요소 분석)

  • Lee, Jong-Hyuk;Kim, Sung-Hun;Lee, Jae-Bong;Han, Jung-Suk;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.111-121
    • /
    • 2010
  • Purpose: This 3D-FEA study was performed to investigate the influence of marginal bone loss pattern around the implant to the stress distribution. Material and methods: From the right second premolar to the right second molar of the mandible was modeled according to the CT data of a dentate patient. Teeth were removed and an implant ($\Phi\;4.0{\times}10.0mm$) was placed in the first molar area. Twelve bone models were created; Studied bone loss conditions were horizontal bone loss and vertical bone loss, assumed bone loss patterns during biologic width formation, and pathologic vertical bone loss with or without cortification. Axial, buccolingual, and oblique force was applied independently to the center of the implant crown. The Maximum von Mises stress value and stress contour was observed and von Mises stresses at the measuring points were recorded. Results: The stress distribution patterns were similar in the non-resorption and horizontal resorption models, but differed from those in the vertical resorption models. Models assuming biologic width formation showed altered stress distribution, and weak bone to implant at the implant neck area seams accelerates stress generation. In case of vertical bone resorption, contact of cortical bone to the implant may positively affect the stress distribution.