• 제목/요약/키워드: FE-simulations

검색결과 241건 처리시간 0.028초

(ZnSe/FeSe) 초격자에 있어서 $Zn_{1-x}Fe_xSe$ 상호확산층의 미세구조 (Microstructure of Intermixed $Zn_{1-x}Fe_xSe$ Alloys in (ZnSe/FeSe) Superlattices)

  • 박경순
    • Applied Microscopy
    • /
    • 제27권3호
    • /
    • pp.235-241
    • /
    • 1997
  • (001) GaAs 기판 위에 성장된 (ZnSe/FeSe) 초격자의 구성층 사이에 상호확산으로 형성된 $Zn_{1-x}Fe_xSe$ 의 미세구조가 고분해능 투과전자현미경과 컴퓨터 이미지 시뮬레이션에 의해 연구되었다. 컴퓨터 이미지 시뮬레이션은 multislice 방법으로 여러 시편 두께와 초점 거리에서 실시되었다. 컴퓨터 시뮬레이션에 의해 얻은 이미지는 실험에 의해 얻은 이미지와 비교되었다. 또한, CuAu-I 형태 규칙화가 $Zn_{1-x}Fe_xSe$ 상호화산층에서 일어났다. 이 CuAu-I 형태 규칙격자는 <100>과 <110> 방향에 따라서 ZnSe와 FeSe 층이 교대로 구성되어 있다.

  • PDF

Structural properties of β-Fe2O3 nanorods under compression and torsion: Molecular dynamics simulations

  • Kilic, Mehmet Emin;Alaei, Sholeh
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1352-1358
    • /
    • 2018
  • In recent years, one-dimensional (1D) magnetic nanostructures, such as magnetic nanorods and chains of magnetic nanoparticles have received great attentions due to the breadth of applications. Especially, magnetic nanorods has been opened an area of active research and applications in medicine, sensors, optofluidics, magnetic swimming, and microrheology since they possess the unique magnetic and geometric features. This study focuses on the molecular dynamics (MD) simulations of an infinitely long crystal ${\beta}-Fe_2O_3$ nanorod. To elucidate the structural properties and dynamics behavior of ${\beta}-Fe_2O_3$ nanorods, MD simulation is a powerful technique. The structural properties such as equation of state and radial distribution function of bulk ${\beta}-Fe_2O_3$ are performed by lattice dynamics (LD) simulations. In this work, we consider three main mechanisms affecting on deformation characteristics of a ${\beta}-Fe_2O_3$ nanorod: 1) temperature, 2) the rate of mechanical compression, and 3) the rate of mechanical torsion.

분자 동역학 모사를 이용한 Fe(100) 표면의 스퍼터링 해석 (Sputtering of Fe(100) Substrate Due to Energetic Ion Bombardments: Investigation with Molecular Dynamics Simulations)

  • 김동호
    • 한국표면공학회지
    • /
    • 제39권2호
    • /
    • pp.76-81
    • /
    • 2006
  • Molecular dynamics simulations were carried out to investigate physical sputtering of Fe(100) substrate due to energetic ion bombardments. Repulsive interatomic potentials at short internuclear distances were determined with ab initio calculations using the density functional theory. Bohr potentials were fitted to the ab initio results on diatomic pairs (Ar-Fe, Fe-Fe) and used as repulsive screened Coulombic potentials in sputtering simulations. The fitted-Bohr potentials improve the accuracy of the sputtering yields predicted by molecular dynamics for sputtering of Fe(100), whereas Moliere and ZBL potentials were found to be too repulsive and gave relatively high sputtering yields. In spite of assumptions and limitations in this simulation work, the sputtering yields predicted by the molecular dynamics method were in fairly good accordance with the obtainable experimental data in absolute values as well as in manner of the variation according to the Incident energy. Threshold energy for sputtering of Fe(100) substrate was found to be about 40 eV. Additionally, distributions of kinetic energies of sputtered atoms and their original depths could be obtained.

블로우 몰딩 공정에서 분사 압력이 성형 두께에 미치는 영향에 관한 연구 (Study on the Effect of Gas Pressure on Bottle Wall Thickness in the Blow Molding Process)

  • 김동환;설상석
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.36-44
    • /
    • 2020
  • This study analyzed the deformation behavior of the high density polyethylene (HDPE) bottle in the blow molding process. We carried out finite element (FE) simulations using ANSYS Polyflow. First, the axisymmetric model was executed by 2D FE-simulation to determine the change of bottle wall thickness during the molding process. Then, the square model of the bottle was executed by 3D FE-simulation to gauge the effects of gas pressure on the change of wall thickness. The experiment results showed that the FE-simulations were able to upgrade the quality of the HDPE bottle in the blow molding process. These results can be used as guidance in adjusting gas pressure, as well as be extended for further study to determine process parameters such as temperatures, forming velocity, parison shape, etc.

Modeling of CNTs and CNT-Matrix Interfaces in Continuum-Based Simulations for Composite Design

  • Lee, Sang-Hun;Shin, Kee-Sam;Lee, Woong
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.478-482
    • /
    • 2010
  • A series of molecular dynamic (MD), finite element (FE) and ab initio simulations are carried out to establish suitable modeling schemes for the continuum-based analysis of aluminum matrix nanocomposites reinforced with carbon nanotubes (CNTs). From a comparison of the MD with FE models and inferences based on bond structures and electron distributions, we propose that the effective thickness of a CNT wall for its continuum representation should be related to the graphitic inter-planar spacing of 3.4${\AA}$. We also show that shell element representation of a CNT structure in the FE models properly simulated the carbon-carbon covalent bonding and long-range interactions in terms of the load-displacement behaviors. Estimation of the effective interfacial elastic properties by ab initio simulations showed that the in-plane interfacial bond strength is negligibly weaker than the normal counterpart due to the nature of the weak secondary bonding at the CNT-Al interface. Therefore, we suggest that a third-phase solid element representation of the CNT-Al interface in nanocomposites is not physically meaningful and that spring or bar element representation of the weak interfacial bonding would be more appropriate as in the cases of polymer matrix counterparts. The possibility of treating the interface as a simply contacted phase boundary is also discussed.

감육배관 손상시험 결과를 이용한 국부손상기준 검증 (Validation of a Local Failure Criteria Using the Results of Wall-Thinned Pipe Failure Tests)

  • 김진원;이성호;박치용
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1393-1400
    • /
    • 2009
  • The objective of this study is to validate local failure criteria, which were proposed based on the notched-bar specimen tests combining with finite element (FE) simulations, using the results of real-scale pipe failure tests. This study conducted burst test using wall-thinned pipe specimens, which were made of 4 inch Sch.80 ASTM A106 Gr.B carbon steel pipe, under simple internal pressure at ambient temperature and performed associated FE simulations. Failure pressures were estimated by applying the failure criteria to the results of FE simulations and were compared with experimental failure pressures. It showed that the local stress based criterion, given as true ultimate tensile stress of material, accurately estimated the failure pressure of wall-thinned pipe specimens. However, the local strain based criterion, which is fracture strain of material as a function of stress tri-axiality, could not predict the failure pressure. It was confirmed that the local stress based criterion is reliably applicable to estimation of failure pressure of local wall-thinned piping components.

Piezoceramic d15 shear-induced direct torsion actuation mechanism: a new representative experimental benchmark

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.483-499
    • /
    • 2013
  • A new piezoceramic $d_{15}$ shear-induced torsion actuation mechanism representative benchmark is proposed and its experimentations and corresponding 3D finite element (FE) simulations are conducted. For this purpose, a long and thin smart sandwich cantilever beam is dimensioned and built so that it can be used later for either validating analytical Saint Venant-type solutions or for analyzing arm or blade-based smart structures and systems applications. The sandwich beam core is formed by two adjacent rows of 8 oppositely axially polarized d15 shear piezoceramic patches, and its faces are dimensionally identical and made of the same glass fiber reinforced polymer composite material. Quasi-static and static experimentations were made using a point laser sensor and a scanning laser vibrometer, while the 3D FE simulations were conducted using the commercial software $ABAQUS^{(R)}$. The measured transverse deflection by both sensors showed strong nonlinear and hysteretic (static only) variation with the actuation voltage, which cannot be caught by the linear 3D FE simulations.

API X65 강의 인장 및 굽힘 시편에 대한 유한요소 연성파괴 해석 (Finite Element Ductile Failure Simulations of Tensile and Bend Bars made of API X65 Steels)

  • 오창균;진태은;김윤재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1696-1701
    • /
    • 2007
  • This paper presents a micro-mechanical model of ductile fracture for the API X65 steel using the Gurson-Tvergaard-Needleman (GTN) model. Experimental tests and FE damage simulations using the GTN model are performed for smooth and notched tensile bars, from which the parameters in the GTN model are calibrated. As application, the developed GTN model is applied to simulate small-sized, single-edge-cracked tensile and bend bars, via three-dimensional FE damage analyses. Comparison of FE damage analysis results with experimental test data shows overall good agreements.

  • PDF

역추적 기법을 활용한 중공형 LM-Guide Rail의 맨드렐 인발 금형 설계 (Die Design in Mandrel Drawing by using Backward Tracing Scheme: A Case for Hollow Linear Motion Guide Rail)

  • 김병민;김상현;이경훈
    • 소성∙가공
    • /
    • 제26권5호
    • /
    • pp.300-305
    • /
    • 2017
  • In this paper, a design method for an intermediate die was developed to manufacture a hollow linear motion guide rail in mandrel drawing process based on virtual die method and backward tracing scheme. FE simulations and mandrel drawing experiments using Mn55Cr carbon steel were performed to prove the effectiveness of the proposed design method. Results of FE simulations and experiments showed that the proposed design method could lead to drawn products with sound shape and the highest dimensional precision.

Nature of the Interfacial Regions in the Antiferromagnetically-coupled Fe/Si Multilayered Films

  • Moon, J.C.;Y.V. Kudryavtsev;J.Y.Rhee;Kim, K.W.;Lee, Y.P.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.174-174
    • /
    • 2000
  • A strong antiferromagnetic coupling in Fe/Si multilayered films (MLF) had been recently discovered and much consideration has been given to whether the coupling in the Fe/Si MLF system has the same origin as the metal/metal MLF. Nevertheless, the nature of the interfacial ron silicide is still controversial. On one hand, a metal/ semiconductor structure was suggested with a narrow band-gap semiconducting $\varepsilon$-FeSi spacer that mediates the coupling. However, some features show that the nature of coupling can be well understood in terms of the conventional metal/metal multilayered system. It is well known that both magneto-optical (MO) and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In this study, the nature of the interfacial regions is the Fe/Si multilayers has been investigated by the experimental and computer-simulated MO and optical spectroscopies. The Fe/Si MLF were prepared by rf-sputtering onto glass substrates at room temperature with the number of repetition N=50. The thickness of Fe sublayer was fixed at 3.0nm while the Si sublayer thickness was varied from 1.0 to 2.0 nm. The topmost layer of all the Fe/Si MLF is Fe. In order to carry out the computer simulations, the information on the MO and optical parameters of the materials that may constitute a real multilayered structure should be known in advance. For this purpose, we also prepared Fe, Si, FeSi2 and FeSi samples. The structural characterization of Fe/Si MLF was performed by low- and high -angle x-ray diffraction with a Cu-K$\alpha$ radiation and by transmission electron microscopy. A bulk $\varepsilon$-FeSi was also investigated. The MO and optical properties were measured at room temperature in the 1.0-4.7 eV energy range. The theoretical simulations of MO and optical properties for the Fe/Si MLF were performed by solving exactly a multireflection problem using the scattering matrix approach assuming various stoichiometries of a nonmagnetic spacer separating the antiferromagnetically coupled Fe layers. The simulated spectra of a model structure of FeSi2 or $\varepsilon$-FeSi as the spacer turned out to fail in explaining the experimental spectra of the Fe/Si MLF in both intensity and shape. Thus, the decisive disagreement between experimental and simulated MO and optical properties ruled out the hypothesis of FeSi2 and $\varepsilon$-FeSi as the nonmagnetic spacer. By supposing the spontaneous formation of a metallic ζ-FeSi, a reasonable agreement between experimental and simulated MO and optical spectra was obtained.

  • PDF