DOI QR코드

DOI QR Code

Structural properties of β-Fe2O3 nanorods under compression and torsion: Molecular dynamics simulations

  • Kilic, Mehmet Emin (Department of Physics, Middle East Technical University) ;
  • Alaei, Sholeh (Department of Physics, Urmia Branch, Islamic Azad University)
  • Received : 2018.03.28
  • Accepted : 2018.07.25
  • Published : 2018.11.30

Abstract

In recent years, one-dimensional (1D) magnetic nanostructures, such as magnetic nanorods and chains of magnetic nanoparticles have received great attentions due to the breadth of applications. Especially, magnetic nanorods has been opened an area of active research and applications in medicine, sensors, optofluidics, magnetic swimming, and microrheology since they possess the unique magnetic and geometric features. This study focuses on the molecular dynamics (MD) simulations of an infinitely long crystal ${\beta}-Fe_2O_3$ nanorod. To elucidate the structural properties and dynamics behavior of ${\beta}-Fe_2O_3$ nanorods, MD simulation is a powerful technique. The structural properties such as equation of state and radial distribution function of bulk ${\beta}-Fe_2O_3$ are performed by lattice dynamics (LD) simulations. In this work, we consider three main mechanisms affecting on deformation characteristics of a ${\beta}-Fe_2O_3$ nanorod: 1) temperature, 2) the rate of mechanical compression, and 3) the rate of mechanical torsion.

Keywords

References

  1. H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater. 48 (1) (2000) 1-29. https://doi.org/10.1016/S1359-6454(99)00285-2
  2. B. Glavin, Low-temperature heat transfer in nanowires, Phys. Rev. Lett. 86 (19) (2001) 4318. https://doi.org/10.1103/PhysRevLett.86.4318
  3. W. Zhou, Y. Zhang, X. Niu, G. Min, One-dimensional SiC nanostructures: synthesis and properties, One-dimensional Nanostructures, Springer, 2008, pp. 17-59.
  4. J. Wang, A. Kulkarni, F. Ke, Y. Bai, M. Zhou, Novel mechanical behavior of ZnO nanorods, Comput. Meth. Appl. Mech. Eng. 197 (41-42) (2008) 3182-3189. https://doi.org/10.1016/j.cma.2007.10.011
  5. S. Xuan, F. Wang, J.M. Lai, K.W. Sham, Y.-X.J. Wang, S.-F. Lee, J.C. Yu, C.H. Cheng, K.C.-F. Leung, Synthesis of biocompatible, mesoporous $Fe_3O_4$ nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications, ACS Appl. Mater. Interfaces 3 (2) (2011) 237-244. https://doi.org/10.1021/am1012358
  6. Y. Zhan, R. Zhao, Y. Lei, F. Meng, J. Zhong, X. Liu, A novel carbon nanotubes $Fe_3O_4$ inorganic hybrid material: synthesis, characterization and microwave electromagnetic properties, J. Magn. Magn. Mater. 323 (7) (2011) 1006-1010. https://doi.org/10.1016/j.jmmm.2010.12.005
  7. Y. Zhu, Y. Fang, S. Kaskel, Folate-conjugated $Fe_3O_4$ $@SiO_2$ hollow mesoporous spheres for targeted anticancer drug delivery, J. Phys. Chem. C 114 (39) (2010) 16382-16388. https://doi.org/10.1021/jp106685q
  8. A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schuth, Nanoengineering of a magnetically separable hydrogenation catalyst, Angew. Chem. Int. Ed. 116 (33) (2004) 4403-4406. https://doi.org/10.1002/ange.200454222
  9. Q. Cheng, F. Qu, N.B. Li, H.Q. Luo, Mixed hemimicelles solid-phase extraction of chlorophenols in environmental water samples with 1-hexadecyl-3-methylimidazolium bromide-coated $Fe_3O_4$ magnetic nanoparticles with high-performance liquid chromatographic analysis, Anal. Chim. Acta 715 (2012) 113-119. https://doi.org/10.1016/j.aca.2011.12.004
  10. A. Sundaresan, C. Rao, Ferromagnetism as a universal feature of inorganic nanoparticles, Nano Today 4 (1) (2009) 96-106. https://doi.org/10.1016/j.nantod.2008.10.002
  11. Q.A. Pankhurst, J. Connolly, S. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D 36 (13) (2003) R167. https://doi.org/10.1088/0022-3727/36/13/201
  12. J. Tucek, L. Machal, S. Ono, A. Namai, M. Yoshikiyo, K. Imoto, H. Tokoro, S.-i. Ohkoshi, R. Zbori, ${\zeta}$-$Fe_2O_3$ a new stable polymorph in iron(iii) oxide family, Sci. Rep. 5 (2015) 15091. https://doi.org/10.1038/srep15091
  13. C. Wu, P. Yin, X. Zhu, C. OuYang, Y. Xie, Synthesis of hematite (${\alpha}$-$Fe_2O_3$) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors, J. Phys. Chem. B 110 (36) (2006) 17806-17812. https://doi.org/10.1021/jp0633906
  14. K. Sivula, F. Le Formal, M. Gratzel, Solar water splitting: progress using hematite (${\alpha}$-$Fe_2O_3$) photoelectrodes, ChemSusChem 4 (4) (2011) 432-449. https://doi.org/10.1002/cssc.201000416
  15. Q.L. Li, Y.F. Wang, C.R. Zhang, Chemical precipitation synthesis and magnetic properties of hematite nanorods, Defect and Diffusion Forum, vol. 293, Trans Tech Publ, 2009, pp. 77-82.
  16. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26b (2005) 3995-4021.
  17. A.-H. Lu, E. e. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. 46 (8) (2007) 1222-1244. https://doi.org/10.1002/anie.200602866
  18. J.-L. Rehspringer, S. Vilminot, D. Niznansky, K. Zaveta, C. Estournes, M. Kurmoo, A temperature and magnetic field dependence mössbauer study of ${\varepsilon}$-$Fe_3O_4$, ICAME 2005, Springer, 2006, pp. 475-481.
  19. J. Jin, K. Hashimoto, S.-i. Ohkoshi, Formation of spherical and rod-shaped ${\varepsilon}$-$Fe_3O_4$ nanocrystals with a large coercive field, J. Mater. Chem. 15 (10) (2005) 1067-1071. https://doi.org/10.1039/B416554C
  20. S.-i. Ohkoshi, S. Sakurai, J. Jin, K. Hashimoto, The addition effects of alkaline earth ions in the chemical synthesis of ${\varepsilon}$-$Fe_3O_4$ nanocrystals that exhibit a huge coercive field, J. Appl. Phys. 97 (10) (2005) 10K312. https://doi.org/10.1063/1.1855615
  21. M. Bonnevie-Svendsen, ${\beta}$-$Fe_2O_3$eine neue eisen(iii)oxyd-struktur, Die Naturwissenschaften 45 (22) (1958) 542.
  22. L. Ben-Dor, E. Fischbein, Z. Kalman, Concerning the ${\beta}$ phase of iron (iii) oxide, Acta Crystallogr. B Struct. Cryst. Cryst. Chem. 32 (2) (1976) 667-667. https://doi.org/10.1107/S0567740876003749
  23. L. Ben-Dor, E. Fischbein, I. Felner, Z. Kalman, ${\beta}$-$Fe_2O_3$: preparation of thin films by chemical vapor deposition from organometallic chelates and their characterization, J. Electrochem. Soc. 124 (3) (1977) 451-457. https://doi.org/10.1149/1.2133323
  24. M. Ikeda, Y. Takano, Y. Bando, Formation mechanism of needle-like ${\alpha}$-$Fe_2O_3$ particles grown along the c axis and characterization of precursorily formed ${\beta}$-$Fe_2O_3$, Bull. Inst. Chem. Res. Kyoto Univ. 64 (4) (1986) 249-258.
  25. C.-W. Lee, S.-S. Jung, J.-S. Lee, Phase transformation of ${\beta}$-$Fe_2O_3$ hollow nanoparticles, Mater. Lett. 62 (4-5) (2008) 561-563. https://doi.org/10.1016/j.matlet.2007.08.073
  26. P. Brazda, J. Kohout, P. Bezdicka, T. Kmjec, ${\alpha}$-$Fe_2O_3$ versus ${\beta}$-$Fe_2O_3$: controlling the phase of the transformation product of ${\varepsilon}$-$Fe_2O_3$ in the $Fe_2O_3$/$SiO_2$ system, Cryst. Growth Des. 14 (3) (2014) 1039-1046. https://doi.org/10.1021/cg4015114
  27. R. Zboril, M. Mashlan, D. Petridis, Iron (iii) oxides from thermal processes synthesis, structural and magnetic properties, mossbauer spectroscopy characterization, and applications, Chem. Mater. 14 (3) (2002) 969-982. https://doi.org/10.1021/cm0111074
  28. T. Gonzalez-Carreno, M.P. Morales, C. Serna, Fine ${\beta}$-$Fe_2O_3$ particles with cubic structure obtained by spray pyrolysis, J. Mater. Sci. Lett. 13 (1994) 381-382. https://doi.org/10.1007/BF00420805
  29. N. Jones, B. Reddy, F. Rasouli, S.N. Khanna, Structural growth in iron oxide clusters: rings, towers, and hollow drums, Phys. Rev. B 72 (16) (2005) 165411. https://doi.org/10.1103/PhysRevB.72.165411
  30. S. Lopez, A.H. Romero, J. Mejia-Lopez, J. Mazo-Zuluaga, J. Restrepo, Structure and electronic properties of iron oxide clusters: a first-principles study, Phys. Rev. B 80 (8) (2009) 085107. https://doi.org/10.1103/PhysRevB.80.085107
  31. V. Tomar, M. Zhou, Analyses of tensile deformation of nanocrystalline ${\alpha}$-$Fe_2O_3+$ fcc-al composites using molecular dynamics simulations, J. Mech. Phys. Solid. 55 (5) (2007) 1053-1085. https://doi.org/10.1016/j.jmps.2006.10.005
  32. D. Cooke, S. Redfern, S. Parker, Atomistic simulation of the structure and segregation to the (0001) and surfaces of $Fe_2O_3$, Phys. Chem. Miner. 31 (8) (2004) 507-517. https://doi.org/10.1007/s00269-004-0396-9
  33. D. Chicot, J. Mendoza, A. Zaoui, G. Louis, V. Lepingle, F. Roudet, J. Lesage, Mechanical properties of magnetite ($Fe_3O_4$), hematite (${\alpha}$-$Fe_2O_3$) and goethite (${\alpha}$-FeO oh) by instrumented indentation and molecular dynamics analysis, Mater. Chem. Phys. 129 (3) (2011) 862-870. https://doi.org/10.1016/j.matchemphys.2011.05.056
  34. J. Mohapatra, A. Mitra, H. Tyagi, D. Bahadur, M. Aslam, Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents, Nanoscale 7 (20) (2015) 9174-9184. https://doi.org/10.1039/C5NR00055F
  35. S. Alaei, S. Erkoc, Structural properties of ${\beta}$-$Fe_2O_3$ nanorods under strain: molecular dynamics simulations, J. Comput. Theor. Nanosci. 11 (1) (2014) 242-248. https://doi.org/10.1166/jctn.2014.3344
  36. G. Rubio-Bollinger, S.R. Bahn, N. Agrat, K.W. Jacobsen, S. Vieira, Mechanical properties and formation mechanisms of a wire of single gold atoms, Phys. Rev. Lett. 87 (2001) 026101. https://doi.org/10.1103/PhysRevLett.87.026101
  37. K.J.W, H.H. wang, Pentagonal multi-shell Cu nanowire, J. Phys. Condens. Matter. 14 (2002) 2629.
  38. H.Y. Zhang, X. Gu, X. Zhang, Y.X, X. Gong, Structures and properties of Ni nanowires, Phys. Lett. A 331 (2004) 332-336. https://doi.org/10.1016/j.physleta.2004.08.016
  39. S. Koh, H. Lee, C. Lu, Q. Cheng, Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects, Phys. Rev. B 72 (8) (2005) 085414. https://doi.org/10.1103/PhysRevB.72.085414
  40. M.E. Kilic, S. Erkoc, Structural properties of defected ZnO nanoribbons under uniaxial strain: molecular dynamics simulations, Curr. Appl. Phys. 14 (1) (2014) 57-67. https://doi.org/10.1016/j.cap.2013.10.009
  41. S. Erkoc, Molecular Dynamics Program for Cluster Simulations (md-tpc-pbc.F), METU, TR, 2010.
  42. J.D. Gale, A.L. Rohl, The general utility lattice program (gulp), Mol. Simulat. 29 (5) (2003) 291-341. https://doi.org/10.1080/0892702031000104887
  43. A. Pedone, G. Malavasi, M.C. Menziani, A.N. Cormack, U. Segre, A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses, J. Phys. Chem. B 110 (24) (2006) 11780-11795. https://doi.org/10.1021/jp0611018
  44. M.E. Kilic, S. Erkoc, Structural properties of ZnO nanotubes under uniaxial strain: molecular dynamics simulations, J. Nanosci. Nanotechnol. 13 (10) (2013) 6597-6610. https://doi.org/10.1166/jnn.2013.7207
  45. A. Rimola, D. Costa, M. Sodupe, J.-F. Lambert, P. Ugliengo, Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments, Chem. Rev. 113 (6) (2013) 4216-4313. https://doi.org/10.1021/cr3003054
  46. V. Metlenko, A.H. Ramadan, F. Gunkel, H. Du, H. Schraknepper, S. Hoffmann- Eifert, R. Dittmann, R. Waser, R.A. De Souza, Do dislocations act as atomic autobahns for oxygen in the perovskite oxide $SrTiO_3$ Nanoscale 6 (21) (2014) 12864-12876. https://doi.org/10.1039/C4NR04083J
  47. J.M. Haile, Molecular Dynamics Simulation: Elementary Methods vol. 1, Wiley, New York, 1992.
  48. S. Nose, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52 (2) (1984) 255-268. https://doi.org/10.1080/00268978400101201
  49. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A 31 (3) (1985) 1695. https://doi.org/10.1103/PhysRevA.31.1695
  50. S. Le Roux, P. Jund, Ring statistics analysis of topological networks: new approach and application to amorphous $GeS_2$ and $SiO_2$ systems, Comput. Mater. Sci. 49 (2010) 70-83, https://doi.org/10.1016/j.commatsci.2010.04.023.
  51. S. Le Roux, P. Jund, Erratum: ring statistics analysis of topological networks: new approach and application to amorphous $GeS_2$ and $SiO_2$ systems, Comput. Mater. Sci. 49 (2010) 70-83, https://doi.org/10.1016/j.commatsci.2010.04.023.
  52. A. Otero-de-la Roza, V. Luana, Gibbs2: a new version of the quasi-harmonic model code. i. robust treatment of the static data, Comput. Phys. Commun. 182 (2011) 1708-1720, https://doi.org/10.1016/j.cpc.2011.04.016.

Cited by

  1. Formation of Interstitial Dislocation Loops by Irradiation in Alpha-Iron under Strain: A Molecular Dynamics Study vol.11, pp.3, 2018, https://doi.org/10.3390/cryst11030317