Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.07.019

Structural properties of β-Fe2O3 nanorods under compression and torsion: Molecular dynamics simulations  

Kilic, Mehmet Emin (Department of Physics, Middle East Technical University)
Alaei, Sholeh (Department of Physics, Urmia Branch, Islamic Azad University)
Abstract
In recent years, one-dimensional (1D) magnetic nanostructures, such as magnetic nanorods and chains of magnetic nanoparticles have received great attentions due to the breadth of applications. Especially, magnetic nanorods has been opened an area of active research and applications in medicine, sensors, optofluidics, magnetic swimming, and microrheology since they possess the unique magnetic and geometric features. This study focuses on the molecular dynamics (MD) simulations of an infinitely long crystal ${\beta}-Fe_2O_3$ nanorod. To elucidate the structural properties and dynamics behavior of ${\beta}-Fe_2O_3$ nanorods, MD simulation is a powerful technique. The structural properties such as equation of state and radial distribution function of bulk ${\beta}-Fe_2O_3$ are performed by lattice dynamics (LD) simulations. In this work, we consider three main mechanisms affecting on deformation characteristics of a ${\beta}-Fe_2O_3$ nanorod: 1) temperature, 2) the rate of mechanical compression, and 3) the rate of mechanical torsion.
Keywords
${\beta}-Fe_2O_3$; Nanorod; Molecular dynamics; Compression; Torsion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.-L. Rehspringer, S. Vilminot, D. Niznansky, K. Zaveta, C. Estournes, M. Kurmoo, A temperature and magnetic field dependence mössbauer study of ${\varepsilon}$-$Fe_3O_4$, ICAME 2005, Springer, 2006, pp. 475-481.
2 J. Jin, K. Hashimoto, S.-i. Ohkoshi, Formation of spherical and rod-shaped ${\varepsilon}$-$Fe_3O_4$ nanocrystals with a large coercive field, J. Mater. Chem. 15 (10) (2005) 1067-1071.   DOI
3 S.-i. Ohkoshi, S. Sakurai, J. Jin, K. Hashimoto, The addition effects of alkaline earth ions in the chemical synthesis of ${\varepsilon}$-$Fe_3O_4$ nanocrystals that exhibit a huge coercive field, J. Appl. Phys. 97 (10) (2005) 10K312.   DOI
4 M. Bonnevie-Svendsen, ${\beta}$-$Fe_2O_3$eine neue eisen(iii)oxyd-struktur, Die Naturwissenschaften 45 (22) (1958) 542.
5 L. Ben-Dor, E. Fischbein, Z. Kalman, Concerning the ${\beta}$ phase of iron (iii) oxide, Acta Crystallogr. B Struct. Cryst. Cryst. Chem. 32 (2) (1976) 667-667.   DOI
6 L. Ben-Dor, E. Fischbein, I. Felner, Z. Kalman, ${\beta}$-$Fe_2O_3$: preparation of thin films by chemical vapor deposition from organometallic chelates and their characterization, J. Electrochem. Soc. 124 (3) (1977) 451-457.   DOI
7 R. Zboril, M. Mashlan, D. Petridis, Iron (iii) oxides from thermal processes synthesis, structural and magnetic properties, mossbauer spectroscopy characterization, and applications, Chem. Mater. 14 (3) (2002) 969-982.   DOI
8 M. Ikeda, Y. Takano, Y. Bando, Formation mechanism of needle-like ${\alpha}$-$Fe_2O_3$ particles grown along the c axis and characterization of precursorily formed ${\beta}$-$Fe_2O_3$, Bull. Inst. Chem. Res. Kyoto Univ. 64 (4) (1986) 249-258.
9 C.-W. Lee, S.-S. Jung, J.-S. Lee, Phase transformation of ${\beta}$-$Fe_2O_3$ hollow nanoparticles, Mater. Lett. 62 (4-5) (2008) 561-563.   DOI
10 P. Brazda, J. Kohout, P. Bezdicka, T. Kmjec, ${\alpha}$-$Fe_2O_3$ versus ${\beta}$-$Fe_2O_3$: controlling the phase of the transformation product of ${\varepsilon}$-$Fe_2O_3$ in the $Fe_2O_3$/$SiO_2$ system, Cryst. Growth Des. 14 (3) (2014) 1039-1046.   DOI
11 D. Chicot, J. Mendoza, A. Zaoui, G. Louis, V. Lepingle, F. Roudet, J. Lesage, Mechanical properties of magnetite ($Fe_3O_4$), hematite (${\alpha}$-$Fe_2O_3$) and goethite (${\alpha}$-FeO oh) by instrumented indentation and molecular dynamics analysis, Mater. Chem. Phys. 129 (3) (2011) 862-870.   DOI
12 T. Gonzalez-Carreno, M.P. Morales, C. Serna, Fine ${\beta}$-$Fe_2O_3$ particles with cubic structure obtained by spray pyrolysis, J. Mater. Sci. Lett. 13 (1994) 381-382.   DOI
13 N. Jones, B. Reddy, F. Rasouli, S.N. Khanna, Structural growth in iron oxide clusters: rings, towers, and hollow drums, Phys. Rev. B 72 (16) (2005) 165411.   DOI
14 S. Lopez, A.H. Romero, J. Mejia-Lopez, J. Mazo-Zuluaga, J. Restrepo, Structure and electronic properties of iron oxide clusters: a first-principles study, Phys. Rev. B 80 (8) (2009) 085107.   DOI
15 V. Tomar, M. Zhou, Analyses of tensile deformation of nanocrystalline ${\alpha}$-$Fe_2O_3+$ fcc-al composites using molecular dynamics simulations, J. Mech. Phys. Solid. 55 (5) (2007) 1053-1085.   DOI
16 D. Cooke, S. Redfern, S. Parker, Atomistic simulation of the structure and segregation to the (0001) and surfaces of $Fe_2O_3$, Phys. Chem. Miner. 31 (8) (2004) 507-517.   DOI
17 J. Mohapatra, A. Mitra, H. Tyagi, D. Bahadur, M. Aslam, Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents, Nanoscale 7 (20) (2015) 9174-9184.   DOI
18 S. Alaei, S. Erkoc, Structural properties of ${\beta}$-$Fe_2O_3$ nanorods under strain: molecular dynamics simulations, J. Comput. Theor. Nanosci. 11 (1) (2014) 242-248.   DOI
19 K.J.W, H.H. wang, Pentagonal multi-shell Cu nanowire, J. Phys. Condens. Matter. 14 (2002) 2629.
20 G. Rubio-Bollinger, S.R. Bahn, N. Agrat, K.W. Jacobsen, S. Vieira, Mechanical properties and formation mechanisms of a wire of single gold atoms, Phys. Rev. Lett. 87 (2001) 026101.   DOI
21 H.Y. Zhang, X. Gu, X. Zhang, Y.X, X. Gong, Structures and properties of Ni nanowires, Phys. Lett. A 331 (2004) 332-336.   DOI
22 A. Pedone, G. Malavasi, M.C. Menziani, A.N. Cormack, U. Segre, A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses, J. Phys. Chem. B 110 (24) (2006) 11780-11795.   DOI
23 H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater. 48 (1) (2000) 1-29.   DOI
24 S. Koh, H. Lee, C. Lu, Q. Cheng, Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects, Phys. Rev. B 72 (8) (2005) 085414.   DOI
25 M.E. Kilic, S. Erkoc, Structural properties of defected ZnO nanoribbons under uniaxial strain: molecular dynamics simulations, Curr. Appl. Phys. 14 (1) (2014) 57-67.   DOI
26 S. Erkoc, Molecular Dynamics Program for Cluster Simulations (md-tpc-pbc.F), METU, TR, 2010.
27 J.D. Gale, A.L. Rohl, The general utility lattice program (gulp), Mol. Simulat. 29 (5) (2003) 291-341.   DOI
28 M.E. Kilic, S. Erkoc, Structural properties of ZnO nanotubes under uniaxial strain: molecular dynamics simulations, J. Nanosci. Nanotechnol. 13 (10) (2013) 6597-6610.   DOI
29 A. Rimola, D. Costa, M. Sodupe, J.-F. Lambert, P. Ugliengo, Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments, Chem. Rev. 113 (6) (2013) 4216-4313.   DOI
30 V. Metlenko, A.H. Ramadan, F. Gunkel, H. Du, H. Schraknepper, S. Hoffmann- Eifert, R. Dittmann, R. Waser, R.A. De Souza, Do dislocations act as atomic autobahns for oxygen in the perovskite oxide $SrTiO_3$ Nanoscale 6 (21) (2014) 12864-12876.   DOI
31 J.M. Haile, Molecular Dynamics Simulation: Elementary Methods vol. 1, Wiley, New York, 1992.
32 S. Nose, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52 (2) (1984) 255-268.   DOI
33 W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A 31 (3) (1985) 1695.   DOI
34 S. Le Roux, P. Jund, Ring statistics analysis of topological networks: new approach and application to amorphous $GeS_2$ and $SiO_2$ systems, Comput. Mater. Sci. 49 (2010) 70-83, https://doi.org/10.1016/j.commatsci.2010.04.023.   DOI
35 A. Otero-de-la Roza, V. Luana, Gibbs2: a new version of the quasi-harmonic model code. i. robust treatment of the static data, Comput. Phys. Commun. 182 (2011) 1708-1720, https://doi.org/10.1016/j.cpc.2011.04.016.   DOI
36 S. Le Roux, P. Jund, Erratum: ring statistics analysis of topological networks: new approach and application to amorphous $GeS_2$ and $SiO_2$ systems, Comput. Mater. Sci. 49 (2010) 70-83, https://doi.org/10.1016/j.commatsci.2010.04.023.   DOI
37 S. Xuan, F. Wang, J.M. Lai, K.W. Sham, Y.-X.J. Wang, S.-F. Lee, J.C. Yu, C.H. Cheng, K.C.-F. Leung, Synthesis of biocompatible, mesoporous $Fe_3O_4$ nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications, ACS Appl. Mater. Interfaces 3 (2) (2011) 237-244.   DOI
38 B. Glavin, Low-temperature heat transfer in nanowires, Phys. Rev. Lett. 86 (19) (2001) 4318.   DOI
39 W. Zhou, Y. Zhang, X. Niu, G. Min, One-dimensional SiC nanostructures: synthesis and properties, One-dimensional Nanostructures, Springer, 2008, pp. 17-59.
40 J. Wang, A. Kulkarni, F. Ke, Y. Bai, M. Zhou, Novel mechanical behavior of ZnO nanorods, Comput. Meth. Appl. Mech. Eng. 197 (41-42) (2008) 3182-3189.   DOI
41 Y. Zhan, R. Zhao, Y. Lei, F. Meng, J. Zhong, X. Liu, A novel carbon nanotubes $Fe_3O_4$ inorganic hybrid material: synthesis, characterization and microwave electromagnetic properties, J. Magn. Magn. Mater. 323 (7) (2011) 1006-1010.   DOI
42 Y. Zhu, Y. Fang, S. Kaskel, Folate-conjugated $Fe_3O_4$ $@SiO_2$ hollow mesoporous spheres for targeted anticancer drug delivery, J. Phys. Chem. C 114 (39) (2010) 16382-16388.   DOI
43 A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schuth, Nanoengineering of a magnetically separable hydrogenation catalyst, Angew. Chem. Int. Ed. 116 (33) (2004) 4403-4406.   DOI
44 K. Sivula, F. Le Formal, M. Gratzel, Solar water splitting: progress using hematite (${\alpha}$-$Fe_2O_3$) photoelectrodes, ChemSusChem 4 (4) (2011) 432-449.   DOI
45 Q. Cheng, F. Qu, N.B. Li, H.Q. Luo, Mixed hemimicelles solid-phase extraction of chlorophenols in environmental water samples with 1-hexadecyl-3-methylimidazolium bromide-coated $Fe_3O_4$ magnetic nanoparticles with high-performance liquid chromatographic analysis, Anal. Chim. Acta 715 (2012) 113-119.   DOI
46 A. Sundaresan, C. Rao, Ferromagnetism as a universal feature of inorganic nanoparticles, Nano Today 4 (1) (2009) 96-106.   DOI
47 Q.A. Pankhurst, J. Connolly, S. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D 36 (13) (2003) R167.   DOI
48 J. Tucek, L. Machal, S. Ono, A. Namai, M. Yoshikiyo, K. Imoto, H. Tokoro, S.-i. Ohkoshi, R. Zbori, ${\zeta}$-$Fe_2O_3$ a new stable polymorph in iron(iii) oxide family, Sci. Rep. 5 (2015) 15091.   DOI
49 C. Wu, P. Yin, X. Zhu, C. OuYang, Y. Xie, Synthesis of hematite (${\alpha}$-$Fe_2O_3$) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors, J. Phys. Chem. B 110 (36) (2006) 17806-17812.   DOI
50 Q.L. Li, Y.F. Wang, C.R. Zhang, Chemical precipitation synthesis and magnetic properties of hematite nanorods, Defect and Diffusion Forum, vol. 293, Trans Tech Publ, 2009, pp. 77-82.
51 A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26b (2005) 3995-4021.
52 A.-H. Lu, E. e. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. 46 (8) (2007) 1222-1244.   DOI