• Title/Summary/Keyword: FE-Simulation

Search Result 727, Processing Time 0.025 seconds

A Monte Carlo Study of Dose Enhancement according to the Enhancement Agents (몬테칼로 기법을 이용한 방사선 선량증가 물질에 따른 선량증가 효과 평가)

  • Kim, Jung-Hoon;Kim, Chang-Soo;Hwang, Chulhwan
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.93-99
    • /
    • 2017
  • Dose enhancement effects at megavoltage (MV) X and ${\gamma}-ray$ energies, and the effects of different energy levels on incident energy, dose enhancement agents, and concentrations were analyzed using Monte Carlo simulations. Gold, gadolinium, Iodine, and iron oxide ($Fe_2O_3$) were compared as dose enhancement agents. For incident energy, 4, 6, 10 and 15 MV X-ray spectra produced by a linear accelerator and a Co-60 ${\gamma}-ray$ were used. The dose enhancement factor (DEF) was calculated using an ICRU Slab phantom for concentrations of 7, 18, and 30 mg/g. The DEF was higher at higher concentrations of dose enhancement agents and at lower incident energies. The calculated DEF ranged from 1.035 to 1.079, and dose enhancement effects were highest for iron oxide, followed by iodine, gadolinium, and gold. Thus, this study contributes to improving the therapeutic ratio by delivering larger doses of radiation to tumor volume, and provides data to support further in vivo and in vitro studies.

Characteristics for Progressive Collapse Behavior and Ultimate Strength of Very Large Marine Structure (초대형 해상구조물의 붕괴거동 및 최종강도 특성)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.5
    • /
    • pp.315-321
    • /
    • 2009
  • The Very Large Marine Structure has been widely used new method of ocean space instead of method for reclamation Therefore, VLFS is proposed to coincide on such request. It can be established regardless of nature of soil and height of water, and stream of flow exists under the floating structure, there is seldom effect in natural environment. Fuertherrnore, it can do easily to do assembly and taking to pieces due to expansion or removal. Based on the regulation by class, VLFS have to possess more than enough structural strength against severe wave loading induced by green sea condition Therefore, There are performed structural simulation as well as experimental test about expected loading scenario in order to examine the safety of structure. Up to now, various examinations based on the strength limit value of the main structural material have been done based on the elasticity response analysis. However, there is little finding about the collapse behavior and the safety when the load that exceeds the collapse of the material acts. In the present study, we investigated the collapse behavior based on the ultimate limit state calculated by FE-analysis.

Precipitation Hardening by Holding After Simulated Complete Firing in a Metal-Ceramic Alloy of Pd-Au-Ag-Sn System (금속-세라믹용 Pd-Au-Ag-Sn계 합금의 모의소성 후 계류에 따른 석출경화)

  • Kim, Min-Jung;Shin, Hye-Jung;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.43 no.4
    • /
    • pp.343-349
    • /
    • 2016
  • This experiment was carried out to examine whether the post-firing heat treatment is effective in increasing the hardness of metal-ceramic alloy of the Pd-Au-Ag-Sn system. Precipitation hardening by holding at $600^{\circ}C$ after simulated complete porcelain firing in a metal-ceramic alloy of the Pd-Au-Ag-Sn system was examined by observing the change in hardness, crystal structure, and microstructure using a hardness test, X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The hardness of the alloy increased apparently by holding the specimen at $600^{\circ}C$ for 30 min after simulated complete porcelain firing. The formation of fine grain interior precipitates during holding at $600^{\circ}C$ caused the formation of lattice strain in the grain interior, resulting in apparent hardening. The faster cooling rate (stage 0) during simulated complete porcelain firing resulted in more effective precipitation hardening during holding at $600^{\circ}C$. From the above results, an appropriate post-firing heat treatment, such as holding at $600^{\circ}C$ for 30 min after complete porcelain firing may increase the durability of metal-ceramic prostheses composed of Pd-Au-Ag-Sn alloy.

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Progressive Damage and Failure Analysis of Open-Hole Composite Specimens Under Compressive Loading Using Finite Element Analysis (유한요소해석을 이용한 압축 하중을 받는 오픈 홀 복합재 시편의 점진적 손상 및 파손 분석)

  • Young Cheol Kim;Geunsu Joo;Hong-Kyu Jang;Jinbong Kim;Min-Gyu Kang;Woo-Kyoung Lee;Ji Hoon Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.303-309
    • /
    • 2023
  • In this paper, a Progressive Damage and Failure Analysis (PDFA) modeling method was developed using ABAQUS/EXPLICIT to predict in-plane damage and delamination for Open-Hole Compression (OHC) testing. The proposed PDFA model was constructed based on Hashin criteria and cohesive behavior. The strength and stiffness of OHC specimens with three types of stacking sequences [(45/-45/02)3]s , [(45/0/-45/90)3]s and [45/-45/0/45/-45/90/(45/-45)2]s were compared to comprehensively evaluate the validity of the Finite Element(FE) model of PDFA. The strength and stiffness of the OHC specimens were predicted relatively well, with less than a percentage error 10.0 %. For the numerical simulation case for each layup, the damage initiation/evolution of OHC specimens were evaluated for delamination and tension/compression matrix damage before and after failure.

A Biomechanical Study on the Various Factors of Vertebroplasty Using Image Analysis and Finite Element Analysis (의료영상 분석과 유한요소법을 통한 추체 성형술의 다양한 인자들에 대한 생체 역학적 효과 분석)

  • 전봉재;권순영;이창섭;탁계래;이권용;이성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.171-182
    • /
    • 2004
  • This study investigates the biomechanical efficacies of vertebroplasty which is used to treat vertebral body fracture with bone cement augmentation for osteoporotic patients using image and finite element analysis. Simulated models were divided into two groups: (a) a vertebral body, (b) a functional spinal unit(FSU). For a vertebral body model, the maximum axial displacement was investigated under axial compression to evaluate the effect of structural integrity. The stiffness of each FE model simulated was normalized by the stiffness of intact model. In the case of FSU model, 3 types of compression fractures were formulated to assess the influence on spinal curvature changes. The FSU models were loaded under compressive pressure to calculate the change of spinal curvature. The results according to the various factors suggest that vertebroplasty has the biomechanical efficacy of the increment of structural reinforcement in a patient who has relatively high level of BMD and a patient with the amount of 15%, PMMA injection of the cancellous bone volume. The spinal curvatures after compression fracture simulation vary from 9$^{\circ}$ to 17$^{\circ}$ of kyphosis compared to that the spinal curvature of normal model was -2.8$^{\circ}$ of lordosis. These spinal curvature changes cause the severe spinal deformity under the same loading. As the degree of compressive fracture increases the spinal deformity also increases. The results indicate that vertebroplasty has the increasing effect of the structural integrity regardless of the amount of PMMA or BMD and the restoration of decreased vertebral body height may be an important factor when the compressive fracture caused the significant height loss of vertebral body.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: II. Linear Wave Front Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : II. 선형파면 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • In the accompanying paper, we proposed a real. time volumetric imaging method using a cross array based on receive dynamic focusing and synthetic aperture focusing along lateral and elevational directions, respetively. But synthetic aperture methods using spherical waves are subject to beam spreading with increasing depth due to the wave diffraction phenomenon. Moreover, since the proposed method uses only one element for each transmission, it has a limited transmit power. To overcome these limitations, we propose a new real. time volumetric imaging method using cross arrays based on synthetic aperture technique with linear wave fronts. In the proposed method, linear wave fronts having different angles on the horizontal plane is transmitted successively from all transmit array elements. On receive, by employing the conventional dynamic focusing and synthetic aperture methods along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. Mathematical analysis and computer simulation results show that the proposed method can provide uniform elevational resolution over a large depth of field. Especially, since the new method can construct a volume image with a limited number of transmit receive events using a full transmit aperture, it is suitable for real-time 3D imaging with high transmit power and volume rate.