• Title/Summary/Keyword: FE-SEM

Search Result 2,269, Processing Time 0.035 seconds

A Study on the Separation of Cesium Cations by Using Electrochemical Ion Exchanger of KNiFe(CN)6 (KNiFe(CN)6 전기화학적 이온교환체를 이용한 세슘 양이온의 분리에 관한 연구)

  • Hwang, Young Gi
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.256-263
    • /
    • 2012
  • This study was performed to investigate the separation of cesium cations by using an electrochemical ion exchanger of nickel hexacyanoferrate($KNiFe(CN)_6$) film electrode. Potential, current, and charge passing through the cyclic voltammograms were measured in singular and binary solutions of 1.0M $NaNO_3$ and 1.0M $CsNO_3$. Before and after each experiment, the structural morphology and atomic composition of $KNiFe(CN)_6$ were analyzed by SEM and EDS, respectively. The ion selectivity of $KNiFe(CN)_6$ was also observed by the voltammograms and atomic compositions measured in the solution alternated between sodium and cesium. As the result of this study, it was found that the electrically switched $KNiFe(CN)_6$ ion exchanger had the significant advantage of 40 times or longer durability than conventional organic or inorganic ion exchanger. It was also shown that the $KNiFe(CN)_6$ ion exchanger had high selectivity for cesium over sodium.

Studies on Improving the Physical Properties of Pr-Fe-B System Rare-Earth Magnets (Pr-Fe-B계 희토류 자석의 물리적 특성 향상에 관한 연구)

  • 고재귀;임상희
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.5
    • /
    • pp.305-309
    • /
    • 1996
  • To obtain the Pr-Fe-B ternary system magnets with higher $(BH)_{max}$, the effect of composition ratio and various heat-treatment temperatures on the magnetic properties of Pr-Fe-B system rare-earth magnets were investigated. The magnets with various composition of Pr and Fe were heat-treated at $990^{\circ}C$, $625^{\circ}C$, $585^{\circ}C$, $550^{\circ}C$ after sintering. Curie temperature is $310^{\circ}C$ and quantitative analysis by SEM, EDX shows that the $Pr_{2}Fe_{14}B$, Pr-rich phase consist of Pr~14 at.% and Fe~86 at.%, Pr~58 at.% and Fe~42 at.%, respectively. The coercivity is decreased after heat-treating at $990^{\circ}C$ and increased from 5.6 to 6.3 kOe at $625^{\circ}C$. The maximum energy product is decreased from 43.4 to 30.3 MGOe after the heat-treating at $990^{\circ}C$ but increased from 42.7 to 45.0 MGOe, about 5 %, by heat-treating at $625^{\circ}C$.

  • PDF

Mechanism and Adsorption Capacity of Arsenic in Water by Zero-Valent Iron (수용액 중 영가 철의 비소흡착 및 반응기작 구명)

  • Yoo, Kyung-Yoal;Ok, Yong-Sik;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • Objective of this research was to evaluate optimal conditions of arsenic adsorption in water by zero-valent iron (ZVI). Batch experiment showed that adsorption of arsenic by ZVI followed a Langmuir isotherm model. The masses of As(V) adsorbed onto ZVI were increased as decreasing pH of the reacting solution (pH 3: 2.05, pH 5: 1.82, pH 7: 1.24, pH 9: 1.03 mg As/g $Fe^0$) and as increasing the temperature ($15^{\circ}C$ : 1.59, $25^{\circ}C$ : 1.81, 35 : $1.93^{\circ}C$ mg As/g $Fe^0$). The SEM and EDS (energy dispersive X-ray spectrometer) analysis of morphology and structure of ZVI before and after reacting with arsenic in water revealed that a relatively smooth and large surface of ZVI was transformed into a coarse and small surface particle after the reaction. The EDS spectra on the chemical composition of ZVI demonstrated that arsenic was incorporated into ZVI by adsorption mechanism. The XRD analysis also identified that the only peak for $Fe^0$ in the ZVI before the reaction and confirmed that $Fe^0$ was transformed into $Fe_2O_3$ and FeOOH, and As into $FeAsO_4{\cdot}2H_2O$.

Removal Properties of Aqueous Ammonium ion with Surface Modified Magnetic Zeolite Adsorbents (자성으로 표면개질된 제올라이트 흡착제를 이용한 수중 암모늄 이온 제거 특성)

  • Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.152-156
    • /
    • 2019
  • The removal property of magnetic zeolite for the adsorption of aqueous ammonium ion was examined in this work. The surface modified magnetic zeolite was produced by hydrothermal synthesis. The complex of zeolite and $Fe_3O_4$ was established by the observation of SEM and XRD analysis and less than 12.6% of $Fe_3O_4$ content in magnetic zeolite was observed in the form of $Fe_3O_4$ particles. The optimum pH of adsorption was shown around 8 and the maximum adsorption linearly decreased with the increase of $Fe_3O_4$ content. The adsorption isotherm for aqueous ammonium ion was approximated by Langmuir equation. The developed surface modified magnetic zeolite adsorbent was recommended to control the nitrogen pollution for wetland environment system.

Characteristics Change on the Surface of Pyrite by Bioleaching with Thiobacillus ferrooxidans(ATCC 19859) and Isolated Strain Thiobacillus KY (Thiobacillus ferrooxidans (ATCC 19859)와 분리균주 Thiobacillus KY에 의한 생물학적 침출에 따른 황철석의 표면 특성변화)

  • 이인화;기민희;김시욱
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.254-261
    • /
    • 2000
  • A bacterial leaching was conducted for pyrite with Thiobacillus ferrooxidans(ATcC 19859) and Thiobacillus KY isolated from acid mine water around Kwangyang area to characterize the surface of substrate as reaction progress at the optimum condition under 9K medium for 3- days. It was found that the surface crystallinity changes referred to hkl plane was observed for 20 days leached by T. ferrooxidans similar changes also observed for 10 days leached pyrite by Thiobacillus KY. Based on he results of SEM-EDS the atomic ratios of Fe, S and Si on the surface were changed to sulfur rich phase but exposed Si ratio decreased from 16.94% to 4.85% during 30days mainly due to reprecipitating of Fe and S as a mixed compound.

  • PDF

Thermoelectric and Electronic Transport Properties of Nano-structured FexCo4-xSb12 Prepared by Mechanical Alloying Process (기계적 합금화법으로 제조된 나노 미세 구조 FexCo4-xSb12의 열전 특성 및 전자 이동 특성)

  • Kim, Il-Ho;Kwon, Joon-Chul;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.647-651
    • /
    • 2006
  • A new class of compounds in the form of skutterudite structure, Fe doped $CoSb_3$ with a nominal composition of $Fe_xCo_{4-x}Sb_{12}$ ($0{\leq}x{\leq}2.5$), were synthesized by mechanical alloying of elemental powders followed by vacuum hot pressing. Nanostructured, single-phase skutterudites were successfully produced by vacuum hot pressing using as-milled powders without subsequent heat-treatments for the compositions of $x{\leq}1.5$. However, second phase was found to form in case of $x{\geq}2$, suggesting the solubility limit of Fe with Co in this system. Thermoelectric properties including thermal conductivity from 300 to 600 K were measured and discussed. Lattice thermal conductivity was greatly reduced by introducing a dopant up to x=1.5 as well as by increasing phonon scattering in nanostructured skutterudite, leading to enhancement in the thermoelectric figure of merit. The maximum figure of merit was found to be 0.32 at 600 K in the composition of $Fe_xCo_{4-x}Sb_{12}$.

Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe) (합성 금속-유기 골격체 NH2-MIL-101(Fe)를 이용한 염료의 흡착 및 광분해 제거)

  • Lee, Joon Yeob;Choi, Jeong-Hak
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.611-620
    • /
    • 2018
  • In this study, a metal-organic framework (MOF) material $NH_2$-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized $NH_2$-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of $NH_2$-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized $NH_2$-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized $NH_2$-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized $NH_2$-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.

A study of dry cleaning for metallic contaminants on a silicon wafer using UV-excited chlorine radical (UV-excited chlorine radical을 이용한 실리콘 웨이퍼상의 금속 오염물의 건식세정에 관한 연구)

  • 손동수;황병철;조동률;김경중;문대원;구경완
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.9-19
    • /
    • 1997
  • The reaction mechanisms of dry cleaning with UV-excited chlorine radical for Zn, Fe and Ti trace contaminants on the Si wafer have been studied by SEM, AFM and XPS analyses in this work. The patterned Zn, Fe and Ti films were deposited on the Si wafer surface by thermal evaporation and changes in the surface morphology after dry cleaning with $Cl_2$and UV/$Cl_2$at $200^{\circ}C$ were studied by optical microscopy and SEM. In addition, changes in the surface roughness of Si wafer with the cleaning was observed by AFM. The chemical bonding states of the Zn, Fe and Ti deposited silicon surface were observed with in-line XPS analysis. Zn and Fe were easily cleaned in the form of volatile zinc-chloride and iron-chloride as verified by the surface morphology changes. Ti which forms involatile oxides was not easily removed at room temperature but was slightly removed by UV/$Cl_2$at elevated temperature of $200^{\circ}C$. It was also found that the surface roughness of the Si wafer increased after $Cl_2$and UV/$Cl_2$cleaning. Therefore, the metallic contaminants on the Si wafer can be easily removed at lower temperature without surface damage by a continuous process using wet cleaning followed by UV/$Cl_2$dry cleaning.

  • PDF