• Title/Summary/Keyword: FE technique

검색결과 775건 처리시간 0.019초

The Application of Ion Chromatographic Method for Bioavailability and Stability Test of Iron Preparations

  • Kim, Young-Ok;Chung, Hye-Joo;Kong, Hak-Soo;Choi, Dong-Woong;Cho, Dae-Hyun
    • Archives of Pharmacal Research
    • /
    • 제22권3호
    • /
    • pp.288-293
    • /
    • 1999
  • Postabsorptive serum iron level was determined after oral administration of the compounds to human. In serum and whole blood, $Fe^{3+}$ was measured by ion chromatography (IC) using a pyridine-2,6-dicarboxylic acid (PDCA) as an eluent. The serum sample solutions were pretreated with I N HCI and 50% TCA. The whole blood sample solutions were treated with 3 N HCI for 30 min at $125^{\circ}C$. The limit of detection (LOD) of the IC technique is $0.2 {\mu}M$ for$Fe^{2+}$and 0.1 $\mu$M for $Fe^{3+}$. The area under concentration (AUC) can be obtained by the above analytical condition. In addition, to compare the stability of $Fe^{2+}$ to that of $Fe^{3+}$ in pharamaceutical preparations, accelerated stability test was carried out. After storing the samples under $40^{\circ}C$, 75%RH in light-resistant container for various time intervals, the contents of iron of different valencies were determined separately by the IC technique and the change and/or the interchange of among those iron species in preparations was investigated. Iron raw materials are stable, but $Fe^{2+}$ in$Fe^{3+}$ source materials was slightly converted to $Fe^{3+}$ by oxidation. $Fe^{2+}$ in$Fe^{3+}$ source raw materials and $Fe^{3+}$ in $Fe^{2+}$ raw materials are determined as impurities. Therefore, IC technique is found to be an appropriate method for comparative evaluation of dissimilar bioavailability of $Fe^{2+}$ and $Fe^{3+}$, stability of $Fe^{2+}$ and $Fe^{3+}$ raw materials and preparations.

  • PDF

Low temperature deposition of carbon nanofilaments using vacuum-sublimated $Fe(CO)_5$ catalyst with thermal chemical vapor deposition

  • Kim, Nam-Seok;Kim, Kwang-Duk;Kim, Sung-Hoon
    • 한국결정성장학회지
    • /
    • 제17권1호
    • /
    • pp.18-22
    • /
    • 2007
  • Carbon nanofilaments were deposited on silicon oxide substrate by thermal chemical vapor deposition method. We used $Fe(CO)_5$ as the catalyst for the carbon nanofilaments formation. Around $800^{\circ}C$ substrate temperature, the formation density of carbon nanofilaments could be enhanced by the vacuum sublimation technique of $Fe(CO)_5$, compared with the conventional spin coating technique. Finally, we could achieve the low temperature, as low as $350^{\circ}C$, formation of carbon nanofilaments using the sublimated Fe-complex nanograins with thermal chemical vapor deposition. Detailed morphologies and characteristics of the carbon nanofilaments were investigated. Based on these results, the role of the vacuum sublimation technique for the low temperature deposition of carbon nanofilaments was discussed.

Direct frequency domain analysis of concrete arch dams based on FE-(FE-HE)-BE technique

  • Lotfi, Vahid
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.285-302
    • /
    • 2004
  • A FE-(FE-HE)-BE procedure is presented for dynamic analysis of concrete arch dams. In this technique, dam body is discretized by solid finite elements, while the reservoir domain is considered by a combination of fluid finite elements and a three-dimensional fluid hyper-element. Furthermore, foundation rock domain is handled by three-dimensional boundary element formulation. Based on this method, a previously developed program is modified, and the response of Morrow Point arch dam is studied for various conditions. Moreover, the effects of canyon shape on response of dam, is also discussed.

흐름주입분석기법을 이용한 Fe2+ 이온과 Fe3+이온의 광학적 동시정량을 위한 분석기법의 개발 (Development of an Analytical Method for the Spectrometric Simultaneous Determination of Fe2+ and Fe3+ Ions Using a Technique of Flow Injection Analysis)

  • 황훈;김진호
    • 대한화학회지
    • /
    • 제46권5호
    • /
    • pp.419-437
    • /
    • 2002
  • 산성조건에서 $H_2O_2$에 의한 $Fe^{2+}$ 이온의 산화($Fe^{2+}{\to}Fe^{3+}$)반응과 $Fe^{3+}$이온과 $SCN^-$이온이 결합하여 붉은색 Fe$(SCN)^{3-x}_x$ 이온을 형성하는 착화반응을 도입한 흐름주입분석기법을 사용하여 $Fe^{2+}$이온과 $Fe^{2+}$이온이 공존하는 시료용액 중 각 이온들의 동시정량을 위한 분석법을 개발하였다. 이 분석법은 개별 이온들에 대한 정량단계에 앞서 혼합시료의 전처리($Fe^{2+}$이온의 예비산화 혹은 $Fe^{2+}$이온의 예비환원)단계를 거쳐야 하는 기존의 분석법들과는 달리 두가지 단계들을 동시에 수행할 수있다는 장점을 가진다. 이 분석법의 측정한계는 [$Fe^{2+}$]=6.00${\times}10^{-7}$M 이었다.

CAGD를 이용한 프리폼 이산화 공간구조물의 유한요소망 자동생성기법 (Automatic FE Mesh Generation Technique using Computer Aided Geometric Design for Free-form Discrete Spatial Structure)

  • 이상진
    • 한국공간구조학회논문집
    • /
    • 제10권2호
    • /
    • pp.77-86
    • /
    • 2010
  • 본 연구에서는 프리폼(free form)을 가지는 공간구조물의 유한요소망을 자동으로 생성하는 기법을 개발하고 그 배경이론과 수치실험 결과 그리고 이용방안에 대하여 기술하였다. 본 연구를 통하여 제시한 유한요소망 생성기법은 공간구조물의 해석을 위해 전통적으로 이용하던 형태별 자동생성기법의 한계를 극복하기 위하여 개발 되었다. 개발된 자동 생성기법은 최근 연속체 쉘 구조물의 형태를 정확히 구현하기 위해 활발히 이용되고 있는 CAGD기법을 도입하였다. 본 연구에서 제시된 자동생성기법은 두 단계의 생성과정을 거치는데 첫 번째가 구조물의 형태를 기하학적인 모델로 표현하는 단계이며 두 번째가 표현된 기하학적인 모델에 이산화된 공간구조물을 생성하는 단계이다. 수치실험을 통하여 본 연구에서 개발된 자동생성기법이 임의의 형상을 가지는 이산화된 공간구조물을 표현하기 용이할 뿐만이 아니라 기존의 자동생성기법을 수정 이용할 수 있는 장점이 있으며 특히 이산화된 공간구조물의 형상최적화에도 효과적으로 이용될 수 있을 것으로 나타났다.

  • PDF

$SnO_2$박막저항의 전기적 특성에 미치는 첨가제의 영향 (Effect of Dopants on Electrical Properties of $SnO_2$Thin Film Resistors)

  • 구본급;강병돈
    • 한국전기전자재료학회논문지
    • /
    • 제13권8호
    • /
    • pp.658-666
    • /
    • 2000
  • Sb and Sb-Fe doped SnO$_2$film resistors were prepared by spray pyrolysis technique. The effects of Sb and Sb-Fe addition on TCR and electrical properties of SnO$_2$film resistors were studied. Also the dependence of electrical properties on the substrate temperature and substrate-nozzle distance was investigated. The Sn-Sb system with 7.9 mol% SbCl$_3$(STO-406) and Sn-Sb-Fe systems with 7.3 mol% SbCl$_3$+7.3 mol% FeCl$_3$(STO-407) and with 3.4 mol% SbCl$_3$+7.7mol% FeCl$_3$(STO-408) were prepared. Both of the systems Sn-Sb and Sn-Sb-Fe represented nonlinearity of TCR with temperature. As the amount of Fe increased TCR was shifted to positive direction. Decreasing Sb or increasing Fe caused resistivity to increase. Also increasing Fe caused the crystallization degree of rutile structure in SnO$_2$film to decrease. The electrical resistivity decreased with increasing substrate temperature The resistivity decreased with increasing substrate-nozzle distance in the ranges from 15 to 25 cm and increased rapidly at the distance over 25cm.

  • PDF

PLD법을 이용한 다양한 온도에서의 $FeSe_x$ 초전도 박막 성장 (Growth of $FeSe_x$ Superconducting Thin Films at Various Temperatures by PLD Technique)

  • 정순길;이남훈;강원남;황태종;김동호
    • Progress in Superconductivity
    • /
    • 제13권2호
    • /
    • pp.117-121
    • /
    • 2011
  • We have fabricated $FeSe_x$ superconducting thin films at much different substrate temperatures of 430 and $610^{\circ}C$ on $Al_2O_3$(0001) substrates by using a pulsed laser deposition (PLD) technique. Superconducting transitions for both films were shown around 10 K, but their transition width and growth directions of grains were different. We found that superconducting tetragonal FeSe phases and non-superconducting hexagonal FeSe phases were coexisted in the sample grown at the low temperature of $430^{\circ}C$, whereas the hexagonal FeSe phase was decreased with increasing fabrication temperatures.

Rapidly Solidified Fe-6.5wt% Si Alloy Powders for High Frequency Use

  • Park, Seung-Dueg;Yang, Choong-Jin
    • Journal of Magnetics
    • /
    • 제2권1호
    • /
    • pp.12-15
    • /
    • 1997
  • Fe-(3∼6.5wt%) Si alloy powders having a high magnetic induction(Bs) and a low core loss value for high frequency use were obtained by an extractive melt spinning as well as a centrifugal atomization technique. Sintered core rings made by the rapidly solidified Fe-6.5wt% Si powders exhibited the high frequency magnetic properties : megnetic induction(B8) of 1.23 T, coercivity(Hc) of 0.12 Oe, relative permeability(${\mu}$a) of 6321, and core loss(W10/50) of 1.27 W/kg from the rings of 1.1 mm thick. The magnetic induction values were found to be almost identical to those of non-oriented Fe-6.5wt% Si steel sheet and double the value of 6.5wt% Si sheet prepared by the CVD technique. The high frequency core losses(W) up to 10 kHz(W10/10k) were measured to be competitive to those of grain-oriented Fe-6.5wt% Si steel sheet.

  • PDF

Magnetic Property of α-Fe2O3 Nanoparticles Prepared by Sonochemistry and Take-off Technique

  • Koo, Y.S.;Yun, B.K.;Jung, J.H.
    • Journal of Magnetics
    • /
    • 제15권1호
    • /
    • pp.21-24
    • /
    • 2010
  • A new synthetic method for the formation of uniform $\alpha-Fe_2O_3$ nanoparticles was reported and their magnetic properties were investigated. The sonochemical synthesis and the subsequent take-off technique resulted in spherical shaped $\alpha-Fe_2O_3$ nanoparticles with an average diameter of 60 nm. The temperature- and applied magnetic field-dependent magnetization of the $\alpha-Fe_2O_3$ nanoparticles was explained by the sum of two contributions, i.e., the Morin transition and superparamagnetism, because the critical size for superparamagnetism was within the size variation of the nanoparticles.

장대교량의 구조 건전도 모니터링을 위한 구조식별 기술 - 최적 센싱 및 FE 모델 개선 중심으로 - (Structural Identification for Structural Health Monitoring of Long-span Bridge - Focusing on Optimal Sensing and FE Model Updating -)

  • 허광희;전준용
    • 한국소음진동공학회논문집
    • /
    • 제25권12호
    • /
    • pp.830-842
    • /
    • 2015
  • This paper aims to develop a SI(structural identification) technique using the kinetic energy optimization technique(KEOT) and the direct matrix updating method(DMUM) to decide on optimal location of sensors and to update FE model respectively, which ultimately contributes to a composition of more effective SHM. Owing to the characteristic structural flexing behavior of cable bridges, which makes them vulnerable to any vibration, systematic and continuous structural health monitoring (SHM) is pivotal for them. Since it is necessary to select optimal measurement locations with the fewest possible measurements and also to accurately assess the structural state of a bridge for the development of an effective SHM, a SI technique is as much important to accurately determine the modal parameters of the current structure based on the data optimally obtained. In this study, the KEOT was utilized to determine the optimal measurement locations, while the DMUM was utilized for FE model updating. As a result of experiment, the required number of measurement locations derived from KEOT based on the target mode was reduced by approximately 80 % compared to the initial number of measurement locations. Moreover, compared to the eigenvalue of the modal experiment, an improved FE model with a margin of error of less than 1 % was derived from DMUM. Finally, the SI technique for long-span bridges proposed in this study, which utilizes both KEOT and DMUM, is proven effective in minimizing the number of sensors while accurately determining the structural dynamic characteristics.