• Title/Summary/Keyword: FE modal analysis

Search Result 147, Processing Time 0.029 seconds

FE model updating and seismic performance evaluation of a historical masonry clock tower

  • Gunaydin, Murat;Erturk, Esin;Genc, Ali Fuat;Okur, Fatih Yesevi;Altunisik, Ahmet Can;Tavsan, Cengiz
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.65-82
    • /
    • 2022
  • This paper presents a structural performance assessment of a historical masonry clock tower both using numerical and experimental process. The numerical assessment includes developing of finite element model with considering different types of soil-structure interaction systems, identifying the numerical dynamic characteristics, finite element model updating procedure, nonlinear time-history analysis and evaluation of seismic performance level. The experimental study involves determining experimental dynamic characteristics using operational modal analysis test method. Through the numerical and experimental processes, the current structural behavior of the masonry clock tower was evaluated. The first five experimental natural frequencies were obtained within 1.479-9.991 Hz. Maximum difference between numerical and experimental natural frequencies, obtained as 20.26%, was reduced to 4.90% by means of the use of updating procedure. According to the results of the nonlinear time-history analysis, maximum displacement was calculated as 0.213 m. The maximum and minimum principal stresses were calculated as 0.20 MPa and 1.40 MPa. In terms of displacement control, the clock tower showed only controlled damage level during the applied earthquake record.

Automated Simulation System for Micromachines (마이크로머쉰의 자동 시뮬레이션 시스템)

  • Lee, Jun Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.29-29
    • /
    • 1996
  • This paper describes a new automated simulation system for micromachines whose size range $10^{-6}$ to $10^{-3}$ m. An automic finite element (FE) mesh generation technique, which is bases on the fuzzy knowledge processing and computation al geometry technique, is incorporated into the system, together with one of commerical FE analysis codes, MARC, and one of commerical solid modelers, Designbase. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena of micromachines to be analyzed, i,e. electrostatic analysis, stress analysis, modal analysis and so on. The FE models are then automatically analyzed using the FE analysis code. Among a whole process of analysis, the definition of a geometry model, the designation of local node patterns and the assignment of material properties and boundary conditions onto the geometry model are only the interactive process to be done by a user. The interactive operations can be processed in a few minutes. The other processes which are time consuming and labour-intensive in conventional CAE systems are fully automatically performed in a popular engineering workstation environment. This automated simulation system is successfully applied to evaluate an electrostatic micro wobble actuator.

A Modal Testing of Large Naval Vessel Using Main Gun Firing Test (주포 사격시험을 이용한 대형 함정의 모달테스트)

  • Park, Mi-You;Han, Hyung-Suk;Cho, Heung-Gi;Kim, Joong-Gil;Im, Dong-Been;Lee, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The accurate results of finite element analysis are directly related to reliability FE model which is exactly describing dynamic characteristics of target structure. So, a model updating is necessary to establish reliable FE(Finite Element) model with a lot of experience and effort using modal testing. A large structure is too difficult to obtain the dynamic characteristics owing to its weight and size. In this work, using main gun firing test, modal testing was performed to obtain dynamic characteristics of large naval vessel, which is difficult to tap the general modal testing method. The result of experiment was considered its possibility and future plans.

Development of Response Spectrum Generation Program for Seismic Analysis of the Nuclear Equipment (원자력기기 내진해석응답스펙트럼 생성프로그램 개발)

  • Byun, Hoon-Seok;Kim, Yu-Chull;Lee, Joon-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.755-762
    • /
    • 2004
  • In our country, when the replacement for individual components of equipment in nuclear power plants is required, establishment of individual criteria i.e. Required Response Spectra(RRS) of seismic test/analysis for the component is very difficult because of the absence of Test Response Spectra(TRS) for the individual component to be replaced, from the existing qualification documents. In this case, it is required to perform the structural analysis for the nuclear equipment including the components to be replaced. After the structural analysis, Analysis Response Spectra(ARS) at the point of the component shall be generated and used for seismic test of the component. However, as of today, no standard program authorized for the response spectra generation by using the structural analysis exists in korea. Because of above reason, the STAR-Egs computer program was developed by using the method which calculates directly the expected response spectrum(frequency vs. acceleration type) of the selected points in the nuclear equipment with input spectrum(Required Response Spectra, RRS), based on the dynamic characteristics of the Finite Element(FE) model that is equivalent to the nuclear equipment. The STAR-Egs controls ANSYS/I-DEAS commercial software and automatically extract modal parameters of the FE model. The STAR-Egs calculates response spectrum using the established algorithm based on the extracted modal parameters, too. Reliance on the calculation result of the STAR-Egs was verified through comparison output with the result of MATLAB commercial software based on the identical algorithm. Moreover, actual seismic testing was performed as per IEEE344-1987 for the purpose of program verification by comparison of the FE analysis results.

  • PDF

Wireless operational modal analysis of a multi-span prestressed concrete bridge for structural identification

  • Whelan, Matthew J.;Gangone, Michael V.;Janoyan, Kerop D.;Hoult, Neil A.;Middleton, Campbell R.;Soga, Kenichi
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.579-593
    • /
    • 2010
  • Low-power radio frequency (RF) chip transceiver technology and the associated structural health monitoring platforms have matured recently to enable high-rate, lossless transmission of measurement data across large-scale sensor networks. The intrinsic value of these advanced capabilities is the allowance for high-quality, rapid operational modal analysis of in-service structures using distributed accelerometers to experimentally characterize the dynamic response. From the analysis afforded through these dynamic data sets, structural identification techniques can then be utilized to develop a well calibrated finite element (FE) model of the structure for baseline development, extended analytical structural evaluation, and load response assessment. This paper presents a case study in which operational modal analysis is performed on a three-span prestressed reinforced concrete bridge using a wireless sensor network. The low-power wireless platform deployed supported a high-rate, lossless transmission protocol enabling real-time remote acquisition of the vibration response as recorded by twenty-nine accelerometers at a 256 Sps sampling rate. Several instrumentation layouts were utilized to assess the global multi-span response using a stationary sensor array as well as the spatially refined response of a single span using roving sensors and reference-based techniques. Subsequent structural identification using FE modeling and iterative updating through comparison with the experimental analysis is then documented to demonstrate the inherent value in dynamic response measurement across structural systems using high-rate wireless sensor networks.

Output-Only System Identification and Model Updating for Performance Evaluation of Tall Buildings (초고층건물의 성능평가를 위한 응답의존 시스템판별 및 모델향상)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.19-33
    • /
    • 2008
  • Dynamic response measurements from natural excitation were carried out for 25- and 42-story buildings to evaluate their inherent properties, such as natural frequencies, mode shapes and damping ratios. Both are reinforced concrete buildings adopting a core wall, or with shear walls as the major lateral force resisting system, but frames are added in the plan or elevation. In particular, shear walls in a 25-story building are converted to frames from the 4th floor level downwards while maintaining a core wall throughout, resulting in a fairly complex structure. Due to this, along with similar stiffness characteristics in the principal directions, significantly coupled and closely spaced modes of motion are expected in this building, making identification rather difficult. By using various state-of-the-art system identification methods, the modal parameters are extracted, and the results are then compared. Three frequency-domain and four time-domain based operational modal identification methods are considered. Overall, all natural frequencies and damping ratios estimated from the different identification methods showed a greater consistency for both buildings, while mode shapes exhibited some degree of discrepancy, varying from method to method. On the other hand, in comparison with analysis results obtained using the initial finite element(FE) models, test results exhibited a significant difference of about doubled frequencies, at least for the three lower modes in both buildings. To improve the correlation between test and analysis, a few manual schemes of FE model updating based on plausible reasons have been applied, and acceptable results are obtained. The advantages and disadvantages of each identification method used are addressed, and some difficulties that might arise from the updating of FE models, including automatic procedures, for such large structures are carefully discussed.

A Study on Thermal and Modal Characteristics for EGR System with Dimpled Rectangular Tube (딤플 사각 튜브형 배기 가스 재순환 시스템의 열 및 진동 특성에 관한 연구)

  • Seo, Young-Ho;Heo, Sung-Chan;Kwon, Young-Seok;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.115-125
    • /
    • 2008
  • Recently, Exhaust Gas Recirculation (EGR) system which re-flow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.

Finite Element Modeling and Experimental Verification of the Automotive Electronics (자동차 전장부품의 유한요소 모델링 및 실험적 검증)

  • Oh, Se-Jong;Lee, Hae-Jin;Kang, Won-Ho;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.204-207
    • /
    • 2005
  • A reliable and practical finite element modeling technique to predict the lifetime of automotive electronics is important for engineers in reliability. In reliability evaluation on the automotive electronics, most studies rarely used FE model verification process. The material properties and boundary conditions are very important factors in this process to assure the reliability of the automotive electronics. This study aims to develop a better and more accurate FE model in order to predict fatigue life of the automotive electronics using Virtual Qualification lifetime assessment techniques. After conducting the modal analysis by the experiments to grasp a system characteristic, this paper presents material properties and boundary conditions that is obtained by the comparisons of FEA simulation results using DOE technique and the experiment results.

  • PDF

Vibration Analysis of the End-winding of Large Generator for Fossil Power Plant under Electromagnetic Excitation (대형 화력 발전용 발전기 권선단부의 전자기력에 의한 진동 해석)

  • 김철홍;주영호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.350-355
    • /
    • 2003
  • This paper presents results of vibration analysis of a end-winding of large generator for fossil power plant. A finite element analysis using a commercial S/W is performed to calculate alternating electromagnetic forces, mainly of 120㎐ in 60㎐ machines, acting on the end-winding, and then to calculate forced response of the end-winding under electromagnetic forces. Also, this paper presents analytical and experimental modal analysis results of generator end-winding to validate FE model. We calculated forced response of end-winding on 120㎐, double rotating frequency. These results will be used to evaluate structural reliability of end-winding and applied to update model.

  • PDF

Analysis of FE/test result for con011ing the squeal noise of wheel brake system (휠제동장치의 스퀼소음 제어를 위한 해석결과 분석)

  • Cha, Jung-Kwon;Park, Yeong-Il;Lee, Dong-Kyun;Cho, Dong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.595-600
    • /
    • 2009
  • Passengers in a vehicle feel uncomfortable due to squeal noise. Squeal noise, a kind of self-excited vibration, is generated by the friction force between the disc and the pad of the automobile. In this paper, modal analysis of wheel brake system was performed in order to prediction of squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. Finite element model of that brake system was made. Some parts of a real brake was selected and modeled. The normal mode analysis method performs analyses of each brake system component. Experiment of modal analysis was performed for each brake components and experimental results were compared with analytical result from FEM. The complex eigenvalue analysis results compared with braking test. The analysis results show good correlation with braking test for the squeal frequency at an unstable mode.

  • PDF