• Title/Summary/Keyword: FE limit analysis

Search Result 129, Processing Time 0.027 seconds

A Lubrication Performance Analysis of Deep Straight Groove Mechanical Face Seal (깊은 직선 홈 미케니컬 페이스 시일의 윤활 성능해석)

  • 이안성;김준호
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.311-320
    • /
    • 2003
  • In this study a general Galerkin FE formulation of the incompressible Reynolds equation is derived for lubrication analyses of noncontacting mechanical face seals. Then, the formulation is applied to analyze the flexibly mounted stator­type reactor coolant pump seals of local nuclear power plants, which have deep straight grooves or plane coning on their primary seal ring faces. Their various lubrication performances have been predicted. Results show that the analyzed deep straight groove seal should have a net coning of less than 0.6 to satisfy the leakage limit. And for the same amount of equilibrium opening force the plane coning seal requires to have a 3 times higher dimensionless coning than the deep straight groove seal.

Lubrication Performance Analysis of Deep Straight Groove Seal (깊은 직선 홈 시일의 윤활 성능해석)

  • Lee An Sung;Kim Jun Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.193-200
    • /
    • 2003
  • In this study a general Galerkin FE formulation of the incompressible Reynolds equation is derived for lubrication analyses of noncontacting mechanical face seals. Then, the formulation is applied to analyze the flexibly mounted stator-type reactor coolant pump seals of local nuclear power plants, which have deep straight grooves or plane coning on their primary seal ring faces. Their various lubrication performances have been predicted. Results show that the analyzed deep straight groove seal should have a net coning of less than $0.6\;{\mu}m$ to satisfy the leakage limit. And for the same amount of equilibrium opening force the plane coning seal requires to have a 3 times higher dimensionless coning than the deep straight groove seal.

  • PDF

Development of Automotive Door Inner Panel using AA 5J32 Tailor Rolled Blank (AA 5J32 Tailor Rolled Blank를 이용한 차량용 Door Inner Panel 개발)

  • Jeon, S.J.;Lee, M.Y.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.512-517
    • /
    • 2011
  • TRB(Tailor Rolled Blank) is an emerging manufacturing technology by which engineers are able to change blank thickness continuously within a sheet metal. TRB door inner panels with required larger thicknesses can be used to support localized high loads. In this study, the aluminum alloy 5J32 TRB sheet is used for a door inner panel application. The TRB material properties were varied by using three heat treatment conditions. In order to predict the failure of the aluminum TRB during simulation, the forming limit diagram, which is used in sheet metal forming analysis to determine the criterion for failure, was investigated. Full-field photogrammetric measurement of the TRB deformation was performed with an ARAMIS 3D system. A FE model of the door inner panel was created using Autoform software. The material properties obtained from the tensile tests were used in the numerical model to simulate the door inner of AA 5J32 for each heat treatment condition. After finite element analysis for the evaluation of formability, a prototype front door panel was manufactured using a hydraulic press.

Buckling and Vibration Characteristics of the Capsule for Nuclear Fuel Irradiation Test (핵연료 조사시험용 캡슐 구조물의 좌굴 및 진동특성)

  • 강영환;김봉구;류정수;김영진;최명환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.125-130
    • /
    • 2004
  • The vibration and buckling characteristics of the capsule for fuel irradiation test are studied. The natural frequencies of the capsule in air and under water are obtained by modal testing and finite element(FE) analysis using ANSYS program, and accelerations with flow are measured to estimate the compatibility with the operation requirement of the HANARO reactor. The experimental fundamental frequency of the capsule in the x and z direction is 8.5Hz and 8.75Hz in air, and 7.5Hz and 7.75Hz under water, respectively. The maximum amplitude of accelerations under the normal operating condition is measured as 11.0m/s$^2$ that is within the allowable vibrational limit(18.99m/s$^2$) of the reactor structure. Also, the maximum displacement at 100% flow is calculated as 0.13mm which is not interference with other nearby structures. FE analysis results show that the natural frequencies are found to be similar to those of the modal testing when three supporting parts are considered as simply supported conditions. From the buckling analysis, when the loading tool is applied, the critical buckling load of the capsule is 233N.

  • PDF

Buckling and Vibration Characteristics of the Capsule for Nuclear Fuel Irradiation Test (핵연료 조사시험용 캡슐 구조물의 좌굴 및 진동특성)

  • 강영환;김봉구;류정수;김영진;최명환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.741-748
    • /
    • 2004
  • The vibration and buckling characteristics of the capsule for fuel irradiation test are studied. The natural frequencies of the capsule in air and under water are obtained by modal testing and finite element (FE) analysis using ANSYS program, and accelerations with flow are measured to estimate the compatibility with the operation requirement of the HANARO reactor. The experimental fundamental frequencies of the capsule in the x and z direction are 8.5 Hz and 8.75 Hz in air, and 7.5 Hz and 7.75 Hz under water, respectively. The maximum amplitude of accelerations under the normal operating condition is measured as 11.0 m/s$^2$ that is within the allowable vibrational limit(18.99 m/s$^2$) of the reactor structure. Also, the maximum displacement at 100% flow is calculated as 0.13 mm which is not interference with other nearby structures. FE analysis results show that the natural frequencies are found to be similar to those of the modal testing when three supporting parts are considered as simply supported conditions. From the buckling analysis, when the loading tool is applied, the critical buckling load of the capsule is 233 N.

Fracture Mechanics Assessment for Different Notch Sizes Using Finite Element Analysis Based on Ductile Failure Simulation (유한요소 연성파손 모사기법을 이용한 노치 결함 반경 크기에 따른 파괴역학적 평가)

  • Bae, Keun Hyung;Jeon, Jun Young;Han, Jae Jun;Nam, Hyun Suk;Lee, Dae Young;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.693-701
    • /
    • 2016
  • In this study, notch defects are evaluated using fracture mechanics. To understand the effects of notch defects, FE analysis is conducted to predict the limit load and J-integral for middle-cracked and single-edge cracked plates with various sizes of notch under tension and bending. As the radius of the notch increases, the energy release rate also increases, although the limit load remains constant. The values of fracture toughness($J_{IC}$) of SM490A are determined for various notch radii through FE simulation instead of conducting an experiment. As the radius of the notch increases, the energy release rate also increases, together with a more significant increase in fracture toughness. To conclude, as the notch radius increases, the resistance to crack propagation also increases.

A Study on Physical Risk and Chemical Risk Analaysis of Seasoned Laver (조미 김의 물리적 위해요소와 화학적 위해요소 분석에 관한 연구)

  • Hwang, Yong-Il;Kim, Jin-Gon;Kwon, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.620-626
    • /
    • 2017
  • This study conducted chemical and physical hazard analysis on the acidity, peroxide value, color removal, and limit criteria of metal detector of roasted laver. The Hunter color L- and a-value of roasted laver was higher than the control, and the b-value was higher at $400^{\circ}C$. The limit criteria establish by metal detector was determined to a sensitivity of 60 because it detected 100% in a sensitivity of 60 to Fe and Sus. The acidity and peroxide values increased with increasing temperature. These results confirmed that roasted laver is safe when roasted to $300^{\circ}C$ for 5 seconds.

Iron Determination in Rat Plasma Samples by Inductively Coupled Plasma Emission Spectrometry and Application to Pharmacokinetic Studies

  • Li, Tie-Fu;Deng, Ying-Jie;Ma, Guang-Li;Jin, Jie;Li, Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1571-1574
    • /
    • 2003
  • This paper describes an inductively coupled plasma emission spectrometric method for the analysis of Fe in rat plasma. Calibration curves were obtained in the range of 0.125-1.50 ${\mu}g{\cdot}mL^{-1}$. The relative standard deviation ranges from 5.93% to 6.80%, and accuracy was between 87.6 and 102.0%. Dilution with water had no influence on the performance of the method, which could then be used to quantify Fe concentration in plasma up to 0.50 ${\mu}g{\cdot}mL^{-1}$. The limit of quantification was 0.10 ${\mu}g{\cdot}mL^{-1}$. At this level, the average relative standard deviation was 6.8%. The results indicate that the method meets the accuracy and precision requirements for the pharmacokinetic studies. The Fe concentration in rat plasma was measured and the main pharmacokinetic parameters were calculated by Topfit 2.0 (GmbH. Shering AG, Godecke AG, Germany).

Evaluation of the Burst Pressure for Rectangular Wall-thinning of CANDU Feeder Pipe (사각 감육을 고려한 중수로 공급자관 파열압력 평가)

  • Kwang Soo Kim;Min Kyu Kim;Doo Ho Cho;Jae Joon Jeong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 2021
  • The flow accelerated corrosion (FAC) is one of significant aging and degradation mechanism and can affect structural integrity of CANDU feeder pipes. Pipe burst can occur under normal operation pressure (min. 10 MPa) if wall-thinning of the feeder pipe due to FAC is accumulated. Previous studies considered simple shapes of feeder pipe with local wall-thinning in order to conservatively assess structural integrity of wall-thinned feeder pipe. In this paper, a new FE model is developed, having an actual shape of the feeder pipe (double bent) as well as the actual wall-thinning shape and location based on the in-service inspection result. Then, the burst pressure assessment of the wall-thinned feeder pipe is performed using lower bound limit load analysis considering elastic-perfectly plastic material. In addition, an improved formulation to predict the burst pressure of the wall-thinned feeder pipe is presented and the safety margin is compared with an existing assessment method.

A Study on the Development of Large Aluminum Flange using Casting/Forging Process (주조/단조 기술을 이용한 대형 알루미늄 플랜지 개발에 관한 연구)

  • 배원병;왕신일;서명규;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.905-909
    • /
    • 2001
  • The significance of casting/forging process for reducing the production cost of large components is being noted in these days. This casting/forging process is a method of forging a workpiece preformed by casting into the final shape. In this study, the casting/forging process has been applied in manufacturing a large aluminum flange in order to determine the optimum forging condition of the aluminum flange. The optimum range of forging temperature of Al 5083 was from $420^{\circ}C$ to $450^{\circ}C$. The suitable strain rate was 1.5 $sec^{-1}$. The deformation amount of a preform in a forging process is key role in the mechanical properties of casting/forging products. In order to find the change of mechanical properties according to effective stain of cast aluminum billets, a hot upsetting test were performed with rectangular blocks and then a uniaxial tensile test was performed with specimens cut from the upsetted billets. The tensile strength and the elongation of cast/upsetted aluminum billets were increased largely until the effective strain was 0.7. FE analysis was performed to determine the configurations of cast preform and die for an aluminum flange. In the FE analysis, the forging load-limit was fixed 1500ton for the low equipment cost. The cast preform was designed so that the effective stain around the neck of a flange exceeds 0.7. In the forging experiment for an aluminum flange, it was confirmed that the optimal configuration of the cast preform predicted by FE analysis was very useful. The cast/forged products using designed preform were made perfectly without any defects.

  • PDF