• 제목/요약/키워드: FE crack analysis

검색결과 189건 처리시간 0.025초

선체 Shell FE 모델 내 용접부의 Solid 요소변환 자동화 시스템 (Pre-processing System for Converting Shell to Solid at Selected Weldment in Shell FE Model)

  • 유진선;하윤석
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.11-15
    • /
    • 2016
  • FE analyses for weldment of ship structure are required for various reasons such as stress concentration for bead tow, residual stress and distortion after welding, and hydrogen diffusion for prediction of low temperature crack. These analyses should be done by solid element modeling, but most of ship structures are modeled by shell element. If we are able to make solid element in the shell element FE modeling it is easily to solve the requirement for solid elements in weld analysis of large ship structures. As the nodes of solid element cannot take moments from nodes of shell element, these two kinds of element cannot be used in one model by conventional modeling. The PSCM (Perpendicular shell coupling method) can connect shell to solid. This method uses dummy perpendicular shell element for transferring moment from shell to solid. The target of this study is to develop a FE pre-processing system applicable at welding at ship structure by using PSCM. We also suggested glue-contact technique for controlling element numbers and element qualities and applied it between PSCM and solid element in automatic pre-processing system. The FE weldment modeling through developed pre-processing system will have rational stiffness of adjacent regions. Then FE results can be more reliable when turn-over of ship-block with semi-welded state or ECA (Engineering critical assessment) of weldment in a ship-block are analyzed.

감육된 증기발생기 전열관의 유한요소 해석 (Finite Element Analysis for Wall Thinned Steam Generator Tubes)

  • 성기용;안석환;남기우
    • 동력기계공학회지
    • /
    • 제10권3호
    • /
    • pp.38-44
    • /
    • 2006
  • Failure assessment of steam generator tube are very important for the integrity of energy plants. In pipes of energy plants, sometimes, the local wall thinning may result from severe erosion-corrosion damage. Recently, the effects of local wall thinning on fracture strength and fracture behavior of piping system have been well studied. In this paper, the elasto-plastic analysis is performed by FE code ANSIS on steam generator tube with wall thinning. We evaluated the failure mode, fracture strength and fracture behavior from FE analysis. It was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area.

  • PDF

알루미늄 보강재 적용에 따른 원형 단부 콘크리트 블록의 지압 보강 효과 (Bearing Reinforcing Effect of Concrete Block with a Round End according to the Application of Aluminum Stiffener )

  • 전석현;권태윤;안진희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권3호
    • /
    • pp.38-46
    • /
    • 2023
  • 본 연구에서는 원형 단부 콘크리트의 알루미늄 보강재 적용에 따른 지압 성능을 평가하기 위하여 지압 시험을 수행하고 이를 해석적으로 평가하였다. 지압강도 실험에서는 원형 단부 콘크리트 제작용 알루미늄 거푸집을 이용한 알루미늄 보강재와 부재이동 및 조립을 위한 강재 앵커볼트로 인한 지압성능 변화를 확인하였다. FE 해석모델은 실험조건과 동일하게 구성하여 결과를 실험과 비교하였으며, 균열 양상과 응력 거동 등도 확인하였다. 또한, 알루미늄 보강재의 강도변화가 원형 단부 콘크리트에 미치는 영향도 해석적으로 평가하였다. 원형 단부 콘크리트는 알루미늄 보강재로 인하여 지압강도가 약 20% 증가하였고, 강재 앵커볼트는 지압강도에 영향을 미치지 않는 것으로 확인되었다. FE 해석 결과 나타난 최대 하중과 균열 양상은 실험과 유사하게 나타났다. 알루미늄 보강재의 강도변화에 따른 FE 해석 결과, 알루미늄 보강재의 강도가 10%, 20% 증가 및 감소함에 따른 최대하중 변화는 강도변화 전과 비교하여 최대 약 4% 수준으로 큰 영향이 없는 것으로 평가되었다.

Analysis of Three-Dimensional Cracks in Inhomogeneous Materials Using Fuzzy Theory

  • Lee, Yang-Chang;Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.119-123
    • /
    • 2005
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. 3D finite element method(FEM) was used to obtain the SIF for subsurface cracks and surface cracks existing in inhomogeneous materials. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy theory. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete FE model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. The results were compared with those surface cracks in homogeneous materials. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

증기발생기 전열관 감육부의 강도 및 손상평가 (Failure Assessment and Strength of Steam Generator Tubes with Wall Thinning)

  • 성기용;안석환;윤자문;남기우
    • 한국해양공학회지
    • /
    • 제21권2호
    • /
    • pp.50-59
    • /
    • 2007
  • Steam generator tubes are degraded from wear, stress corrosion cracking, rupture and fatigue and so on. Therefore, the failure assessment of steam generator tube is very important for the integrity of energy plants. In the steam generator tubes, sometimes, the local wall thinning may result from severe degradations such as erosion-corrosion damage and wear due to vibration. In this paper, the elasto-plastic analysis was performed by FE code ANSYS on steam generator tubes with wall thinning. Also, the four-point bending tests were performed on the wall thinned specimens, and then it was compared with the analysis results. We evaluated the failure mode, fracture strength and fracture behavior from the experiment and FE analysis. Also, it was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area from FE analysis.

용접부 중앙에 표면균열이 존재하는 인장 평판에 대한 강도 불일치 한계하중 해석 및 간략 J-적분 예측 (Mis-Match Limit Load Analyses and Approximate J-Integral Estimates for Similar Metal Weld with Weld-Center Crack Under Tension Load)

  • 송태광;김윤재;김종성;진태은
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.411-418
    • /
    • 2008
  • In this work, the effect of strength mismatch on plastic limit loads is quantified for similar metal weld plates with cracks under tension load, via three-dimensional, small strain elastic-perfectly plastic finite element analyses. Relevant variables related to plate geometry and crack length are systematically varied, in addition to the weld width. An important finding is that mis-match limit loads can be uniquely quantified through strength mis-match ratio and one geometry-related parameter. Based on the proposed limit load solutions, reference stress based J-integral estimates is also investigated. When the reference stress is defined by the mis-match limit load, predicted J-integral values agree overall well with FE results.

Numerical validation of burst pressure estimation equations for steam generator tubes with multiple axial surface cracks

  • Kim, Ji-Seok;Lee, Myeong-Woo;Kim, Yun-Jae;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.579-587
    • /
    • 2019
  • This paper provides further validation of the burst pressure estimation equations for multiple axial surface cracked steam generator tubes, recently proposed by the authors based on analytical local collapse load approach against systematic FE damage analysis results of Alloy 690 tubes with twin axial surface cracks. Wide ranges of the relative crack depth and multiple crack configurations are considered. Comparison shows good agreements, giving sufficient confidence of the proposed equations.

유한요소법을 이용한 이동질량 하에 크랙을 갖는 티모센코 보의 동특성 연구 (Dynamic Analysis of the Cracked Timoshenko Beam under a Moving Mass using Finite Element Method)

  • 강환준;이시복;홍금식;전승민
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.271-276
    • /
    • 2004
  • In this paper. dynamic behavior of the cracked beam under a moving mass is presented using the finite element method (FEM). Model accuracy is improved with the following consideration: (1) FE model with Timoshenko beam element (2) Additional flexibility matrix due to crack presence (3) Interaction forces between the moving mass and supported beam. The Timoshenko bean model with a two-node finite element is constructed based on Guyan condensation that leads to the results of classical formulations. but in a simple and systematic manner. The cracked section is represented by local flexibility matrix connecting two unchanged beam segments and the crack as modeled a massless rotational spring. The inertia force due to the moving mass is also involved with gravity force equivalent to a moving load. The numerical tests for various mass levels. crack sizes. locations and boundary conditions were performed.

  • PDF

하중-균열열림변위를 이용한 굽힘하중이 작용하는 원주방향 관통균열 배관의 새로운 J 실험법 (New J Testing Method Using Load-COD Curve for Circumferential Through-Wall Cracked Pipes under Bending)

  • 허남수;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.60-65
    • /
    • 2006
  • The present paper provides experimental J estimation equation for the circumferential through-wall cracked pipe under four-point bending, based on the load-crack opening displacement (COD) record. Based on the limit analysis and the kinematically admissible rigid-body rotation field, the plastic ${\eta}$-factor for the load-COD record is derived and is compared with that for the load-load line displacement record. Comparison with the J results from detailed elastic-plastic finite element (FE) analysis shows that the proposed method based on the load-COD record provides reliable J estimates even for shallow cracks, whereas the conventional approach based on the load-load line displacement record gives erroneous results for shallow cracks. Thus, the proposed J estimation method could be recommended for testing the circumferential through-wall cracked pipe, particularly with shallow cracks.

Experimental and FE investigation of repairing deficient square CFST beams using FRP

  • Mustafa, Suzan A.A.
    • Steel and Composite Structures
    • /
    • 제29권2호
    • /
    • pp.187-200
    • /
    • 2018
  • This paper handles the repairing of deficient square Concrete-Filled Steel-Tube (CFST) beams subject to bending through an experimental and numerical program. Eight square-CFST beams were tested. A 5-mm artificial notch was induced at mid-span of seven beams, four of them were repaired by using CFRP sheets and two were repaired by using GFRP sheets. The beam deflection, strain and ultimate moments were recorded. It was found that providing different cut-off points for the different layers of FRP sheets prohibited failure at termination points due to stress concentrations. Using different lengths of FRP sheets around the notch retarded crack propagation and prevented FRP rupture at the crack position. Finite element analysis was then conducted and the proposed FE model was verified against the recorded experimental data. The influence of various parameters as FRP sheet length, tensile modulus and the number of layers were studied. The moment capacity of damaged square-CFST beams was improved up to 77.6% when repaired by using four layers of CFRP, however, this caused a dramatic decrease in beam deflection. U-wrapping of notched-CFST beam with 0.75 of its length provided a comparable behaviour as wrapping the full length of the beam.