• Title/Summary/Keyword: FE analysis method

Search Result 1,541, Processing Time 0.033 seconds

Fabrication of piezoelectric PZT thick film by aerosol deposition method (에어로졸 증착법에 의한 압전 PZT 후막의 제조)

  • Kim, Ki-Hoon;Bang, Kook-Soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.95-99
    • /
    • 2013
  • Lead zirconate titanate (PZT) thick films with a thickness of $10-20{\mu}m$ were fabricated on silicone substrates using an aerosol deposition method. The starting powder, which had diameters of $1-2{\mu}m$, was observed using SEM. The average diameter ($d_{50}$) was $1.1{\mu}m$. An XRD analysis showed a typical perovskite structure, a mixture of the tetragonal phase and rhombohedral phase. The as-deposited film with nano-sized grains had a fairly dense microstructure without any cracks. The deposited film showed a mixture of an amorphous phase and a very fine crystalline phase by diffraction pattern analysis using TEM. The as-deposited films on silicon were annealed at a temperature of $700^{\circ}C$. A 20-${\mu}m$ thick PZT film was torn out as a result of the high compressive stress between the PZT film and substrate.

A Study on the Distortion Control Characteristics of the STS 304 Multi-pass Butt Weldment by the Tensioning Method (인장하중법에 따른 STS 304 다층 맞대기 용접부의 변형 제어 특성에 관한 연구)

  • Kim, Ha-Keun;Lee, Dong-Ju;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.101-101
    • /
    • 2009
  • The purpose of this study is to develop the control technology of the welding distortion caused by Auto NG-GTA welding process at the STS 304 multi-pass butt weldment. For it, heat input model for Auto NG-GTA welding process was established and verified by measuring temperature change and molten pool shape at the bead-on-plate weldment. With heat input model developed, the effect of the tension load on the amount of welding distortion at the STS 304 multi-pass butt weldment was evaluated using the thermo-elasto-plastic FE analysis. In accordance with FEA results, the angular distortion and transverse shrinkage sharply decreased with an increase in tension load. This result indicates that tensioning method was verified as a countermeasure against the welding distortion of STS 304 multi-pass butt weldment.

  • PDF

Yaw Gearbox Design for 4MW Class Wind Turbine (4MW급 풍력발전기용 요 감속기 설계)

  • Lee, Hyoung-Woo;Kim, In-Hwan;Lee, Jae-Shin
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.142-148
    • /
    • 2022
  • In this paper, the weight reduction design of the yaw gearbox for wind turbine was performed through the finite element analysis method, and the stability was checked by performing the critical speed analysis. The weight reduction product can improve engine efficiency, save parts materials, and earn economic benefits. The yaw gearbox is lightweighted with the goal of achieving a safety rate of 1.3 or higher for wind turbine as indicated by IEC61400-1. In order to reduce the weight of the carrier, a topology optimization method was performed. The safety factor was verified by performing finite element analysis on the carrier. In addition, the housing and carrier were modeled using the finite element method, and the gear train was modeled using MASTA. For the yaw gearbox, the housing and carrier FE model and the gear train model were connected by the partial structural synthesis method to perform the rotational vibration analysis. Vibration excitation sources are mass unbalance and gear mesh frrequemcy, and as a result of the critical speed analysis, it was found that there was no resonance within the operating speed range.

A Study on Weldment Boundary Condition for Elasto-Plastic Thermal Distortion Analysis of Large Welded Structures (대형 용접구조물의 탄소성 열변형 해석을 위한 용접부의 변형률 경계조건에 관한 연구)

  • Ha, Yun-Sok
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • A thermal distortion analysis which takes strains directly as boundary conditions removed barrier of analysis time for the evaluation of welding distortion in a large shell structure like ship block. If the FE analysis time is dramatically reduced, the structure modeling time or the input-value calculating time will become a new issue. On the contrary to this, if the calculation time of analysis input-value is dramatically reduced and its results also are more meaningful, a little longer analysis time could be affirmative. In this study, instead of using inherent strain based on elastic analysis, a thermal strain based on elasto-plastic analysis is used as the boundary condition of weldments in order to evaluate the welding distortion. Here, the thermal strain at the weldment was established by using a stress-strain curve established from the test results. It is possible to automatically recognize the modeling induced-stiffness in the shrinkage direction of welded or heated region. The validity of elasto-plastic thermal distortion analysis was verified through the experiment results with various welding sequence.

A Study of the Nutritional Composition of the Dandelion by Part (Taraxacum officinale) (민들레의 부위별 영양성분 함량 비교)

  • 이성현;박홍주;한귀정;조수묵;이승교
    • The Korean Journal of Community Living Science
    • /
    • v.15 no.3
    • /
    • pp.57-61
    • /
    • 2004
  • Many studies have presented results about the antioxidative and antimicrobial activities of Dandelions (Taraxacum officinale). There has yet to be a study which makes comparisons of nutrients based on the parts of the Dandelion. To identify the nutrient composition by part of dandelion, nutrient contents were analyzed. Dandelions were taken from Songpa-gu in Seoul and the nutrient composition of the flower, leaf and root were measured. The nutrient content of each part was analysed by using the method developed by the Association of Official Analytical Chemists (AOAC). The proximate components(moisture, protein, fat, fiber, ash, and carbohydrates), minerals and vitamins of the dandelion were analysed. The nutrient composition of the dandelions showed many significant differences among the parts when the differences were determined by using Duncan's multiple range test. The leaf contains more protein, ash, Ca, K, Mg, Zn, vitamin A, B$_1$, B$_2$, and C than the other parts. The root has much more fiber, carbohydrate, P and Fe content. The results demonstrate that dandelions could be used as a food source supplement for fiber, Ca, Fe and vitamin B$_2$ which are common nutritional deficiencies in Korea. It is recommended that more research for other bio-functional factors besides nutrients composition is needed to enhance the utilization of the dandelion.

  • PDF

Engineering J-Integral Estimation for Internal Axial Surface Cracks in Cylinders (I) -Deformation Plasticity Based Estimation- (실린더에 존재하는 축방향 표면균열에 대한 공학적 J-적분식 (I) - 변형소성에 기초한 방법-)

  • Kim, Jin-Su;Kim, Yun-Jae;Park, Yeong-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1672-1679
    • /
    • 2002
  • This paper provides an engineering J estimation equation for cylinders with finite internal axial surfacecracks under internal pressure. The proposed equation is the J estimation equation based on deformation plasticity using Ramberg-Osgood (R-O) materials. Based on detailed 3-D FE results using deformation plasticity, plastic influence functions for fully plastic J components are tabulated for practically interesting ranges of the mean radius-to-thickness ratio, the crack depth-to-length ratio, the crack depth-to-thickness ratio. the strain hardening index for the R-O material, and the location along the semi-elliptical crack front. Based on tabilated plastic influence functions, the J estimation equation along the crack front is proposed and validated for R-O materials. Good agreements between the FE results and the proposed J estimation provide confidence in the use of the proposed method to elastic-plastic fracture mechanics of pressurized piping.

Engineering J-Integral Estimation for Internal Axial Surface Cracks in Cylinders (II) -Optimised Reference Stress Based Estimation- (실린더에 존재하는 축방향 표면균열에 대한 공학적 J-적분식 (II) - 최적참조응력에 기초한 방법-)

  • Kim, Jin-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2442-2449
    • /
    • 2002
  • This paper provides an reference stress based J estimation equation fur cylinders with finite internal axial surface cracks under internal pressure. In part 1, the J estimation equation based on deformation plasticity using Ramberg-Osgood (R-0) materials is proposed. In this paper, the developed CE/EPRI -type solutions ale then re-formulated based on the reference stress concept. Such a re-formulation provides a simpler equation for J. estimation are then further extended to combined internal pressure and bending. The proposed reference stress based J estimation equation is compared with elastic-plastic 3-D FE results using actual stress-strain data for a Type 304 stainless steel. Good agreement between the FE results and the proposed reference stress based J estimations provides confidence in the use of the proposed method to elastic -plastic fracture mechanics of pressurised piping.

A Study on the Electrochemical Properties of SPEEK/PWA/Silica Composite Membranes (SPEEK/PWA/Silica 복합막의 전기화학적 특성에 관한 연구)

  • Oh, Sae-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2529-2535
    • /
    • 2013
  • Sol-gel method was utilized to prepare SPEEK/PWA electrolyte composite membranes. TEOS was used as a precursor and phosphotungstic acid(PWA) as a catalyst for the sol-gel reaction. It was observed through FE-SEM analysis that the PWA and silica nanoparticles were uniformly dispersed into the polymer matrix. The water uptake of SPEEK/PWA/silica composite membranes was less affected by TEOS concentration at higher TEOS contents, while the water uptake decreased as TEOS concentration increased at lower TEOS contents. The proton conductivity of the composite membranes showed similar trend as the water uptake of the composite membranes. The methanol permeability of SPEEK/PWA/silica composite membranes decreased as TEOS concentration increased.

Production and Properties of Ag Metallic Nanoparticle Fluid by Electrical Explosion of Wire in Liquid (유체 내 전기선폭발법에 의한 은 나노입자 유체의 제조 및 특성)

  • Park, E.J.;Bac, L.H.;Kim, J.S.;Kwon, Y.S.;Kim, J.C.;Choi, H.S.;Chung, Y.H.
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.217-222
    • /
    • 2009
  • This paper presents a novel single-step method to prepare the Ag nanometallic particle dispersed fluid (nanofluid) by electrical explosion of wire in liquid, deionized water (DI water). X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) were used to investigate the characteristics of the Ag nanofluids. Zeta potential was also used to measure the dispersion properties of the as-prepared Ag nanofluid. Pure Ag phase was detected in the nanofluids using water. FE-SEM analysis shows that the size of the particles formed in DI water was about 88 nm and Zeta potential value was about -43.68 without any physical and chemical treatments. Thermal conductivity of the as-prepared Ag particle dispersed nanofluid shows much higher value than that of pure DI water.

Numerical Study of the Formability of Fiber Metal Laminates Based on Self-reinforced Polypropylene (자기 강화형 폴리프로필렌을 이용한 섬유 금속 적층판의 성형성에 관한 수치해석적 연구)

  • Lee, B.E.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.150-157
    • /
    • 2013
  • Fiber metal laminates (FMLs) are layered materials comprised of thin metal sheets and fiber reinforced plastic (FRP). This paper presents the numerical study of the formability enhancement of FMLs composed of an aluminum alloy and self-reinforced polypropylene (SRPP) composite. In this study, a numerical simulation based on finite element (FE) modeling is proposed to evaluate the formability of FMLs using ABAQUS/Explicit. The FE model, which included a single layer of solid and shell elements to model the blank, used discrete layers of the solid element with a contact model and shell elements with a friction based model for the aluminum alloy-composite interface conditions. This method allowed the description of each layer of FMLs and was able to simulate the interaction between the layers. It is noted through this research that the proposed numerical simulation described properly the formability enhancement of the FMLs and the simulation results showed good agreement with experimental results.