• Title/Summary/Keyword: FE analysis method

Search Result 1,523, Processing Time 0.027 seconds

Numerical study on thin plates under the combined action of shear and tensile stresses

  • Sathiyaseelan, S.;Baskar, K.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.867-882
    • /
    • 2012
  • Analytical (Rayleigh-Ritz method) and numerical studies are carried out and buckling interaction curves are developed for simply supported plates of varying aspect ratios ranging from 1 to 5, under the combined action of in-plane shear and tension. A multi-step buckling procedure is employed in the Finite Element (FE) model instead of a regular single step analysis in view of obtaining the buckling load under the combined forces. Both the analytical (classical) and FE studies confirm the delayed shear buckling characteristics of thin plate under the combined action of shear and tension. The interaction curves are found to be linear and are found to vary with plate aspect ratio. The interaction curve developed using Rayleigh-Ritz method is found to deviate in an increasing trend from that of validated FE model as plate aspect ratio is increased beyond value of 1. It is found that the observed deviation is due to the insufficient number of terms that is been considered in the assumed deflection function of Rayleigh-Ritz method and a convergence study is suggested as a solution.

Iron Determination in Rat Plasma Samples by Inductively Coupled Plasma Emission Spectrometry and Application to Pharmacokinetic Studies

  • Li, Tie-Fu;Deng, Ying-Jie;Ma, Guang-Li;Jin, Jie;Li, Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1571-1574
    • /
    • 2003
  • This paper describes an inductively coupled plasma emission spectrometric method for the analysis of Fe in rat plasma. Calibration curves were obtained in the range of 0.125-1.50 ${\mu}g{\cdot}mL^{-1}$. The relative standard deviation ranges from 5.93% to 6.80%, and accuracy was between 87.6 and 102.0%. Dilution with water had no influence on the performance of the method, which could then be used to quantify Fe concentration in plasma up to 0.50 ${\mu}g{\cdot}mL^{-1}$. The limit of quantification was 0.10 ${\mu}g{\cdot}mL^{-1}$. At this level, the average relative standard deviation was 6.8%. The results indicate that the method meets the accuracy and precision requirements for the pharmacokinetic studies. The Fe concentration in rat plasma was measured and the main pharmacokinetic parameters were calculated by Topfit 2.0 (GmbH. Shering AG, Godecke AG, Germany).

3D FE modeling and parametric analysis of steel fiber reinforced concrete haunched beams

  • Al Jawahery, Mohammed S.;Cevik, Abdulkadir;Gulsan, Mehmet Eren
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.45-69
    • /
    • 2022
  • This paper investigates the shear behavior of reinforced concrete haunched beams (RCHBs) without stirrups. The research objective is to study the effectiveness of the ideal steel fiber (SF) ratio, which is used to resist shear strength, besides the influence of main steel reinforcement, compressive strength, and inclination angles of the haunched beam. The modeling and analysis were carried out by Finite Element Method (FE) based on a software package, called Atena-GiD 3D. The program of this study comprises two-part. One of them consists of nine results of experimental SF RCHBs which are used to identify the accuracy of FE models. The other part comprises 81 FE models, which are divided into three groups. Each group differed from another group by the area of main steel reinforcement (As) which are 226, 339, and 509 mm2. The other parameters which are considered in each group in the same quantities to study the effectiveness of them, were steel fiber volumetric ratios (0.0, 0.5, and 1.0)%, compressive strength (20.0, 40.0, 60.0) MPa, and the inclination angle of haunched beam (0.0°, 10.0°, and 15.0°). Moreover, the parametric analysis was carried out on SF RCHBs to clarify the effectiveness of each parameter on the mechanical behavior of SF RCHBs. The results show that the correlation coefficient (R2) between shear load capacities of FE proposed models and shear load capacities of experimental SF RCHBs is 0.9793, while the effective inclination angle of the haunched beam is 10° which contributes to resisting shear strength, besides the ideal ratio of steel fibers is 1% when the compressive strength of SF RCHBs is more than 20 MPa.

Proposal of a Simulated Test Method for the Evaluation of Deformation and Failure Characteristics of Pipe Elbows under Cyclic Loads (반복하중 하의 엘보우 변형 및 손상 특성 평가를 위한 모사시험 방법 제안)

  • Kim, Jin Weon;Lee, Dae Young;Park, Heung Bae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This study proposed a simulated test method using ring specimen to evaluate the deformation and failure characteristics of pipe elbows under a large amplitude cyclic load. The validity of the test method was demonstrated by finite element (FE) analysis of pipe elbow and ring specimen under cyclic loads. The results showed that the proposed test method adequately simulates the distribution of circumferential strain at crown of pipe elbows where cracks occur under cyclic loads and presents the cyclic hardening behavior of pipe elbows. The parametric FE analysis showed that consistent simulated test results could be obtained when the test section of the ring specimen is longer than 1/2 of the inner diameter of the ring specimen and the radius of the inner loading jig is less than 1/4 of the inner diameter of the specimen.

Process Design of Multi-Stage Shape Drawing Process for Cross Roller Guide (크로스 롤러 가이드 다단 형상인발 공정설계에 관한 연구)

  • Lee, Sang-Kon;Lee, Jae-Eun;Lee, Tae-Kyu;Lee, Seon-Bong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.124-130
    • /
    • 2009
  • In the multi-stage shape drawing process, the most important aspect for the economy is the correct design of the various drawing stage. For most of the products commonly available round or square materials can be used as initial material. However, special products should be pre-rolled. This study proposes a process design method of multi-stage shape drawing process for producing cross roller guide. Firstly, a standard classification of shape drawing process is suggested based on the requirement of pre-rolling process. And a design method is proposed to design the intermediate die shape. The process design method is applied to design the multi-stage shape drawing process for producing cross roller guide. Finally, the effectiveness of the proposed design method is verified by FE-analysis and shape drawing experiment.

Performance of Nanosized Fe3O4 and CuO Supported on Graphene as Anode Materials for Lithium Ion Batteries (그래핀에 담지된 Fe3O4와 CuO 나노입자의 리튬이차전지 음극성능)

  • Jeong, Jae-Hun;Jung, Dong-Won;Han, Sang-Wook;Kim, Kwang-Hyun;Oh, Eun-Suok
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.239-244
    • /
    • 2011
  • In this study, $Fe_3O_4$/graphene and CuO/graphene composites were synthesized by the polyol reduction method using ethylene glycol, and their performances as the anodes of lithium ion batteries were evaluated. The physical characteristics of the synthesized composites were analyzed by SEM, XRD, and TGA. In addition, their electrochemical properties were examined by the electrochemical analysis techniques such as charge/discharge performance, cyclic voltammetry, and AC impedance spectroscopy. The cells composed of $Fe_3O_4$/graphene and CuO/graphene composites showed better performance than the graphene electrode, due to the dispersion of nanosized $Fe_3O_4$ or CuO on the surface of graphene and the formation of good electrical network in the electrode. Their composites kept the reversible capacity more than 600 mAh/g even after the charging/discharging of 30 cycles.

Synthesis and physicochemical characterization of NixZnx-Fe2O4/MWCNT nanostructures as enzyme mimetics with peroxidase-like catalytic activity

  • Salarizadeh, Navvabeh;Sadri, Minoo;Hosseini, Hassan;Sajedi, Reza. H.
    • Carbon letters
    • /
    • v.24
    • /
    • pp.103-110
    • /
    • 2017
  • Carbon-based magnetic nanostructures in several instances have resulted in improved physicochemical and catalytic properties when compared to multi-wall carbon nanotubes (MWCNTs) and magnetic nanoparticles. In this study, magnetic MWCNTs with a structure of $Ni_xZn_xFe_2O_4/MWCNT$ as peroxidase mimics were fabricated by the one-pot hydrothermal method. The structure, composition and morphology of the nanocomposites were characterized with X-ray diffraction (XRD), Fourier transform infrared spectroscopy and transmission electron microscopy. The magnetic properties were investigated with a vibrating sample magnetometer. The peroxidase-like catalytic activity of the nanocomposites was investigated by colorimetric and electrochemical tests with 3,3',5,5'-tetramethylbenzidine (TMB) and $H_2O_2$ as the substrates. The results show that the synthesis of the nanocomposites was successfully performed. XRD analysis confirmed the crystalline structures of the $Ni_xZn_xFe_2O_4/MWCNT$ nanohybrids and MWCNTs. The main peaks of the $Ni_xZn_xFe_2O_4/MWCNT$s crystals were presented. The $Ni_{0.25}Zn_{0.25}Fe_2O_4/MWCNT$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4/MWCNT$ nanocatalysts showed nearly similar physicochemical properties, but the $Ni_{0.5}Zn_{0.5}Fe_2O_4/MWCNT$ nanocatalyst was more appropriate than the $Ni_{0.25}Zn_{0.25}Fe_2O_4/MWCNT$ nanocatalyst in terms of the magnetic properties and catalytic activity. The optimum peroxidase-like activity of the nanocatalysts was obtained at pH 3.0. The $Ni_{0.5}Zn_{0.5}Fe_2O_4/MWCNT$ nanocatalyst exhibited a good peroxidase-like activity. These magnetic nanocatalysts can be suitable candidates for future enzyme-based applications such as the detection of glucose and $H_2O_2$.

Chemical Speciations of Elements in the Fe-Mn Crusts by Sequential Extraction (단계별 추출법을 이용한 망간각 구성 원소의 존재 형태)

  • Kim, Jong-Uk;Moon, Jai-Woon;Chi, Sang-Bum;Ko, Young-Tak;Lee, Hyun-Bok
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.231-243
    • /
    • 2004
  • Sequential extraction was carried out on twenty two subsamples of three ferromanganese crusts from three seamounts (Lemkein, Lomilik, and Litakpooki) near the Marshall Islands in the western Pacific. The extraction was designed to fractionate Fe-Mn crust forming elements into low defined groups: (1) exchangeable and carbornate, (2) Mn-oxide, (3) Fe-oxyhyd.oxide, and (4) residual fraction. X-ray diffraction result shows that target material were well removed by each extraction step except for CFA in phosphatized crusts generation. According to chemical analysis of each leachate, most of elements in the Fe-Mn crusts are bound with two major phases. Mn, Ba, Co, Ni, Zn, (Fe, Sr, Cu, and V) are strongly bounded with Mn-oxide $({\delta}-MnO_2)$ phase, whereas Fe, Ti, Zr, Mo, Pb, Al, Cu,(V, P, and Zn) show chemical affinity with Fe-oxyhydroxide phase. This result indicates that significant amount of Al, Ti, and Zr can not be explained by detrital origin. Ca, Mg, K, and Sr mainly occur as exchangeable elements and/or carbonate phase. Outermost layer 1 and inner layer 2 which are both young crusts generations are similar in chemical speciations of elements. However, some of Fe-oxyhydroxide bounded elements (Pb, Y, Mo, Ba, Al, and V) in phosphatized innermost layer 3 are released during phosphatization and incorporated into phosphate (Pb, Y, Mo, and Ba) or Mn-oxide phase (Al and V). Our sequential extraction results reveal that chemical speciations of elements in the hydrogenetic crusts are more or less different from interelemental relationship calculated by statistical method based on bulk chemistry.

Tree-dimensional FE Analysis of Acoustic Emission of Fiber Breakage using Explicit Time Integration Method (외연적 시간적분법을 이용한 복합재료 섬유 파단 시 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.172-175
    • /
    • 2005
  • The numerical simulation is performed for the acoustic emission and the wave propagation due to fiber breakage in single fiber composite plates by the finite element transient analysis. The acoustic emission and the following wave motions from a fiber breakage under a static loading is simulated to investigate the applicability of the explicit finite element method and the equivalent volume force model as a simulation tool of wave propagation and a modeling technique of an acoustic emission. For such a simple case of the damage event under static loading, various parameters affecting the wave motion are investigated for reliable simulations of the impact damage event. The high velocity and the small wave length of the acoustic emission require a refined analysis with dense distribution of the finite element and a small time step. In order to fulfill the requirement for capturing the exact wave propagation and to cover the 3-D simulation, we utilize the parallel FE transient analysis code and the parallel computing technology.

  • PDF

Efficient Methods of Prediction Incorporating Equivalent Models for Elasto-Plastic Bending Behavior of Metallic Sandwich Plates with Inner Dimpled Shell Structure (등가형상을 이용한 딤플형 금속 샌드위치 판재의 효율적 굽힘 거동 예측)

  • Seong D. Y.;Jung C. G.;Yoon S. J.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.718-724
    • /
    • 2005
  • An efficient finite element method has been introduced for analysis of metallic sandwich plates subject to bending moment. A full model 3-point bending FE-analysis shows that the plastic behavior of inner structures appears only at the load point. The unit structures of sandwich plates are defined to numerically calculate the bending stiffness and strength utilizing the recurrent boundary condition for pure bending analysis. The equivalent models with the same bending stiffness and strength of full models are then designed analytically. It is demonstrated that the results of both models are almost the same and the FE-analysis method incorporating the equivalent models can reduce the computation time effectively. The dominant collapse modes are face buckling and face yielding. Since the inner dimpled structures prevent face buckling, sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.