• 제목/요약/키워드: FE Rotordynamics

검색결과 8건 처리시간 0.024초

고효율 복합형 진공펌프의 로터다이나믹 해석 (A Rotordynamics Analysis of High Efficiency and Hybrid Type Vacuum Pump)

  • 김병옥;이안성;노명근
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.967-975
    • /
    • 2007
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modern semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element bearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300 rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through 3-D FE analysis and experimental modal analysis. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated by considering the generalized forces of the gear action as well as the rotor itself. Each resultant bearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of lateral and torsional critical speeds, and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, unbalance responses under various unbalance locations, and torsional interference diagram. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.

깊은 직선 홈 시일의 윤활 성능해석 (Lubrication Performance Analysis of Deep Straight Groove Seal)

  • 이안성;김준호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.193-200
    • /
    • 2003
  • In this study a general Galerkin FE formulation of the incompressible Reynolds equation is derived for lubrication analyses of noncontacting mechanical face seals. Then, the formulation is applied to analyze the flexibly mounted stator-type reactor coolant pump seals of local nuclear power plants, which have deep straight grooves or plane coning on their primary seal ring faces. Their various lubrication performances have been predicted. Results show that the analyzed deep straight groove seal should have a net coning of less than $0.6\;{\mu}m$ to satisfy the leakage limit. And for the same amount of equilibrium opening force the plane coning seal requires to have a 3 times higher dimensionless coning than the deep straight groove seal.

  • PDF

증속 기어 전동 로터-베어링 시스템의 횡-비틀림 연성 유한요소 로터다이나믹 해석 (A Coupled Lateral and Torsional FE Rotordynamic Analysis of Speed Increasing Geared Rotor-Bearing System)

  • 이안성;하진웅;최동훈
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.82-88
    • /
    • 2001
  • In a transmission or geared rotor system a coupled phenomenon of lateral and torsional vibrations may occur due to the gear meshing effect. Particularly, in high speed or low vibration and low noise applications of geared rotor systems a coupled rotordynamic analysis is required to precisely predict their dynamic characteristics. In this paper a generalized finite element model of a gear pair element is developed, which actively couples the lateral and torsional vibrations due to the gear meshing effect. In the modeling the generalized forces due to the transmission error. geometrical eccentricities. and unbalances in the gear system are also considered. Then. using the developed gear pair element model a coupled unforced rotordynamic analysis is performed with a prototype 800 RT turbo-chiller rotor-bearing system having a hull-pinion speed increasing gear. Results show that the torsional vibration characteristics experience some changes due to the gear meshing and lateral dynamic coupling effect, but that they have no adverse effect and the lateral ones have no practical changes in an operating speed range.

  • PDF

산소공장 공기터보압축기(ATC)의 회전체동역학 설계특성 분석 및 진동저감 (Analysis of Rotordynamic Design Characteristics and Vibration Reduction of an Air Turbo Compressor for Oxygen Plant)

  • 김병옥;이안성
    • 한국유체기계학회 논문집
    • /
    • 제13권3호
    • /
    • pp.43-48
    • /
    • 2010
  • In this study rotordynamic characteristics of an air turbo-compressor (ATC) used in oxygen plant are analyzed and its operating-speed balancing is performed to solve the vibration trouble caused by rotor unbalance. Three dimensional model of the ATC rotor is completed and then analytical FE (finite element) model, which is verified by experimental modal testing, is developed. A rotordynamic analysis includes the critical map, Campbell diagram, and unbalance response, especially considering the pedestal housings supporting tilting pad bearings. A test run of operating-speed, using tilting-pad bearing of actual use, showed that the vibration level increased very sharply as approaching the rated speed. The operating-speed balancing specified by API 684 was carried out by using influence coefficient method. The results showed that the vibrations at the bearing pedestal housings represented good levels of 0.1 mm/s. From the test run and operating-speed balancing, the analytical results, that is, critical speeds are in good agreement with the test results and unbalance responses introducing the correction masses are similar to the as-is test responses in its aspect.

DDM Rotordynamic Design Sensitivity Analysis of an APU Turbogenerator Having a Spline Shaft Connection

  • Lee, An-Sung;Ha, Jin-Woong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.57-63
    • /
    • 2003
  • An eigenvalue design sensitivity formulation of a general nonsymmetric-matrix rotor-bearing system is devised. using the DDM (direct differential method). Then, investigations on the design sensitivities of critical speeds are carried out for an APU turbogenerator with a spline shaft connection. Results show that the dependence of the rate of change of the critical speed on the stiffness changes of bearing models of spline shaft connection points is negligible, and thereby their modeling uncertainty does not present any problem. And the passing critical speeds up to the 4th critical speed are not sensitive to the design stiffness coefficients of four main bearings. Further, the dependence of the rate of change of the critical speed on the shaft-element length changes shows quantitatively that the spline shaft has some limited influence on the 4th critical speed but no influence on the 1st to 3rd critical speeds. With no adverse effect from the spline shaft, the APU system achieves a critical speed separation margin of more than 40% at a rated speed of 60,000 rpm.

산업용 원심분리기의 진동저감을 위한 로터다이나믹 해석 (A Rotordynamic Analysis of a Industrial Centrifuge for Vibration Reduction)

  • 김병옥;이안성
    • 한국소음진동공학회논문집
    • /
    • 제18권8호
    • /
    • pp.879-885
    • /
    • 2008
  • A rotordynamic analysis was performed with a decant-type centrifuge, which is a kind of industrial centrifuge. The system is composed of screw rotor, bowl rotor, driving motors, gear box, and support rolling element bearings. These rotors have a rated speed of 4300 rpm, and were modeled utilizing a rotordynamic FE method for analysis, which was verified through 3-D FE analysis. Design goals are to achieve wide separation margins of lateral critical speeds, and favorable unbalance responses of the rotor in the operating range. Then, a complex analysis rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds and mode shapes, whirl natural frequencies, and unbalance responses under various balance grade. As a result of analysis, the rotordynamic analysis performed by separating a screw rotor and bowl rotor may cause an error in predicting critical speed of entire system. Therefore, the rotordynamic analysis of a coupled rotor combining a screw and bowl rotor must be performed in order to more accurately estimate dynamic characteristics of the decanter-type centrifuge as presented in this paper. Also, rolling element bearings with suitable stiffness should be selected to keep enough separation margin. In addition, in establishing balance grade of a screw and bowl rotor, ISO G2.5 balance grade is more recommended than ISO G6.3, in particular balancing correction of a screw rotor based on ISO G2.5 grade is strongly recommended.

고속 운전용 건식진공펌프 로터-베어링 시스템의 회전체동역학 해석 (Rotordynamic Analysis of a Dry Vacuum Pump Rotor-Bearing System for High-Speed Operation)

  • 이안성;이동환;김병옥
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.523-530
    • /
    • 2006
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modern semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element hearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through the results of its 3-D finite element model. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated determinately and indeterminately by considering the generalized forces of the gear action as veil as the rotor itself. Each resultant hearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, and unbalance responses under various unbalance locations. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.

  • PDF

고속 운전용 건식진공펌프 로터-베어링 시스템의 전체동역학 해석 (A Rotordynamic Analysis of Dry Vacuum Pump Rotor-Bearing System for High-Speed Operation)

  • 김병옥;이안성;노명근
    • 한국유체기계학회 논문집
    • /
    • 제10권3호
    • /
    • pp.47-54
    • /
    • 2007
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modem semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element bearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through the results of its 3-D finite element model. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated determinately and indeterminately by considering the generalized forces of the gear action as well as the rotor itself. Each resultant bearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, and unbalance responses under various unbalance locations. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.