• Title/Summary/Keyword: FDM 3D printing

Search Result 119, Processing Time 0.024 seconds

Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems (미세유체시스템 제작을 위한 3D 프린팅 방식 및 소재 별 표면특성 비교)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.706-713
    • /
    • 2019
  • In this study, basic research was conducted to provide guidelines for selecting printers and materials suitable for each application case by analyzing 3D printing method and surface characteristics of materials suitable for microfluidic system. We have studied the surface characteristics according to the materials for the two typical printing methods: The most commonly used method of Fused Deposition Modeling (FDM) printing and the relatively high resolution method of Stereolithography (SLA) printing. The FDM prints exhibited hydrophilic properties before post - treatment, regardless of the material, but showed hydrophobic properties after post - treatment with acetone vapor. It was confirmed by the observation of surface roughness using SEM that the change of the contact angle was due to the removal of the surface structure by post-treatment. SLA prints exhibited hydrophilic properties compared to FDM prints, but they were experimentally confirmed to be capable of surface modification using hydrophobic coatings. It was confirmed that it is impossible to make a transparent specimen in the FDM method. However, sufficient transparency is secured in the case of the SLA method. It is also confirmed that the electroporation chip of the digital electroporation system based on the droplet contact charging phenomenon was fabricated by the SLA method and the direct application to the microfluidic system by demonstrating the electroporation successfully.

A Study on the Mechanical Properties of Knit Fabric Using 3D Printing -Focused on PLA, TPU Filament- (3D프린팅을 이용한 편성물의 역학적 특성 연구 -PLA, TPU 필라멘트를 중심으로-)

  • Han, Yoojung;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.22 no.4
    • /
    • pp.93-105
    • /
    • 2018
  • Using FDM 3D printing, yarn shape and composition were modeled and 3D printed with PLA and TPU filaments currently used for apparel. Based on this, mechanical characteristics were measured to determine 3D printing yarn according to type of filaments in the 3D printed output and deformation and recovery characteristics due to differences in structure type. As a result of examining tensile and shear characteristics of PLA and TPU 3D printing compiles, TPU overall was measured with significantly lower stress than PLA. This is due to high elasticity of TPU's character, revealing that it has better flexibility than PLA. In addition, during deformation due to external forces, the more freedom between the head and foot parts of the loop, and the lower the force associated with each other, the more flexible it is. TPU revealed that it was easier to tension and recovery from tensile deformation than PLA, indicating potential for clothing materials using 3D printing. If high-molecular materials, such as PLA flexibility, it is likely to provide some flexibility through development of styles, including degree of freedom in modeling. Based on this, we provide basic data for developing 3D printing textures that can be satisfied with textile for apparel.

Proposal of finger splint design using design guidelines to reflect user requirements - Using FDM 3D printing technology - (사용자의 요구조건을 반영 할 수 있는 디자인 가이드라인을 이용한 손가락 보조기 디자인 제안 - FDM 방식의 3D 프린팅 기술을 이용하여 -)

  • Shin, I Yeol;Oh, Kwang Myung
    • Design Convergence Study
    • /
    • v.18 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • General finger splint manufactured and sold domestically could have been of great help to patients with disabilities due to damage to the body's. However, it reminded the wearer of his disability that he wanted to hide. This has had a negative effect on the psychological side of self-absorption and depression. If this avoids or rejects wearing, the role of ancillary rehabilitation is lost. This does not meet the user's requirements. Thus, in this study, 3D printing was used to better reflect user requirements. Next, the study examined existing prior studies to identify the characteristics and criteria of each study. It also examined medical finger aids that were being sold in the auxiliary device market. The assessment criteria were derived by compiling and interpreting user surveys of each finger splint device. Based on the evaluation criteria derived, the design guidelines for finger splint were presented using FDM-style 3D printers. Finally, we proposed a finger splint design according to the proposed design guideline.

FDM Full Color 3D Printer GUI Design Development of Checklist for Usability (FDM 풀 컬러 3D프린터 GUI디자인 사용성을 위한 체크리스트 개발)

  • Park, Ji-Hoon;Jang, Jung-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.123-134
    • /
    • 2020
  • With the recent development of 3D printers, there is a growing need to make them similar to real products. As a result, FDM full-color 3D printers have been developed and actively distributed, but GUI design has fallen short of that, causing confusion among users. Accordingly, this study conducted a literature survey, and through a case study, the current status of FDM full-color 3D printers was identified and the components of GUI design were analyzed based on prior research. The draft checklist was drawn up according to the components of the derived GUI design, and 24 items were deleted through the three Delphi surveys and the validity of the remaining 26 items was verified. As a result, the layout should consist of intuitive screen configuration and menus with high frequency of use, and the text should be intuitive and clearly communicated. In addition, the icon should be placed in a visible position and used in real life to image it. Finally, we could see that the color should be used to give feedback to the user using the highlight color and not overlap the output.

Design and Operation of 3D Printing Education Curriculum in Mechanical Engineering (기계공학 교과과정에서 3D 프린팅 교육의 설계와 운영)

  • Lee, In Hwan;Shin, Jung Min;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.21-26
    • /
    • 2015
  • Many 3D printing technologies are being used in various industries, and their demands for well-educated engineers are increasing. Moreover, novel technologies are being developed to overcome the limits of existing 3D printing technologies. In this regard, adequate education and a related curriculum especially in the Mechanical Engineering field, which is the basis of the industry, is essential. In this paper, the development of the 3D printing curriculum and its assessment in Mechanical Engineering education are proposed. The education program consisted of lectures and practice. It consisted of major 3D printing technologies, such as SLA, FDM, SLS, LOM, and Polyjet. Moreover, post-processing, room temperature vulcanizing (RTV), and coloring were also taught. The effectiveness of the proposed education program was assessed by the questionnaire survey, and the results were analyzed. Areas of improvement were deduced from the survey results.

Development of 3D Printed Bags Using Roll-Type Printing Method (롤(roll) 형태의 출력방식을 활용하는 3D 프린팅 가방 개발)

  • Lee, Jiwon;Chun, Jaehoon
    • Fashion & Textile Research Journal
    • /
    • v.24 no.5
    • /
    • pp.505-518
    • /
    • 2022
  • 3D printing technology, also known as additive manufacturing(AM), has not been actively used in the clothing industry despite its potential for economic, environmental, and labor efficiency. Therefore, this study aims to propose a new 3D printing method for the clothing industry, which will be more readily accessible. This roll-type printing method can print wide-sized patterns at once using a 3D modeling program and a FDM 3D printer and help overcome the limitations imposed by the size of the printer. Then, to demonstrate the practical application cases of this printing method, bags of three designs were developed. Prior to product development, a thickness test was performed for stable printing using TPU(Thermoplastic Poly Urethane) filament, and a thickness of 0.45 mm was found to be most suitable for it. Next, the time efficiency test showed that the roll-type printing method takes less time compared to the general printing method in printing wide-sized patterns. Based on these tests, three bags, , and , were developed to confirm the suitability of the roll-type printing method for product development. The advantages of 3D roll-type printing can lie in overcoming of the spatial limitation, and the environmental sustainability as it can reduce waste from the production process. This study is significant in that it presents a new 3D printing method to improve the space limitations and time inefficiency of 3D printers.

Dimensional Characteristics of Impeller Output Using 3D Printers (3D 프린터를 이용한 임펠러 출력물의 치수 특성)

  • Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.56-62
    • /
    • 2022
  • This study analyzed the output precision of 3D printing methods. The inner impeller of the centrifugal compressor was printed in as a sheet with 100% packing density using two methods: field deposition modelling and stereolithography. Dimensional differences between the initial CAD and printed models were evaluated using a 3D scanner. To investigate the dimensional characteristics of the 3D printed impeller, 3D dimension analysis and point dimension analysis were performed. The point dimension analysis was divided into 3D and 2D for comparative analysis.

A Study on Problem Solving of 3D Printing Production of Scaffold Using ADRIGE TRIZ Algorithm and DOE (ADRIGE 트리즈 알고리즘과 실험계획법을 이용한 인공지지체 3D프린팅의 제작문제 해결에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.92-97
    • /
    • 2019
  • In this paper, we investigated the problems and solutions in the production of scaffolds using commercially available FDM 3D printers. We used ADRIGE TRIZ algorithm to systematically analyze the problems and suggest solutions. We printed scaffolds using suggested solutions. We measured the pore size and printing time of the scaffolds. We have confirmed that the printing precision is greater than 99% and the printing time is decreased by half. The suggested solutions proved its validity through experiments and showed satisfactory results.

Accuracy of maxillofacial prototypes fabricated by different 3-dimensional printing technologies using multi-slice and cone-beam computed tomography

  • Yousefi, Faezeh;Shokri, Abbas;Farhadian, Maryam;Vafaei, Fariborz;Forutan, Fereshte
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • Purpose: This study aimed to compare the accuracy of 3-dimensional(3D) printed models derived from multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) systems with different fields of view (FOVs). Materials and Methods: Five human dry mandibles were used to assess the accuracy of reconstructions of anatomical landmarks, bone defects, and intra-socket dimensions by 3D printers. The measurements were made on dry mandibles using a digital caliper (gold standard). The mandibles then underwent MDCT imaging. In addition, CBCT images were obtained using Cranex 3D and NewTom 3G scanners with 2 different FOVs. The images were transferred to two 3D printers, and the digital light processing (DLP) and fused deposition modeling (FDM) techniques were used to fabricate the 3D models, respectively. The same measurements were also made on the fabricated prototypes. The values measured on the 3D models were compared with the actual values, and the differences were analyzed using the paired t-test. Results: The landmarks measured on prototypes fabricated using the FDM and DLP techniques based on all 4 imaging systems showed differences from the gold standard. No significant differences were noted between the FDM and DLP techniques. Conclusion: The 3D printers were reliable systems for maxillofacial reconstruction. In this study, scanners with smaller voxels had the highest precision, and the DLP printer showed higher accuracy in reconstructing the maxillofacial landmarks. It seemed that 3D reconstructions of the anterior region were overestimated, while the reconstructions of intra-socket dimensions and implant holes were slightly underestimated.

An Adaptive Extrusion Control Technique for Faster FDM 3D Printing of Lithophanes (투명조각자기의 고속 FDM 3D 프린팅을 위한 가변 압출 기법)

  • Jang, Seung-Ho;Hong, Jeong-Mo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-201
    • /
    • 2017
  • This paper proposes how to solve a problem of FDM 3D printer's irregular output when changing volume of extrusion, adjusting movement speed of the printer's head and a way to fill new inner part. Existing slicers adjust directly to change the rotation speed of the stepper. In this method, the change of the extrusion area is delayed due to the gap between the stepper and the nozzle, so that precise control is difficult. We control the extrusion area adjusting the moving speed of the print head and making constantly the rotation speed of the stepper. Thus, the output time can be shortened by generating an efficient path having a short travel distance. For evaluation, we applied our method to lithophanes with detailed variation. Comparing existing methods, our method reduced output time at least 30%.