• Title/Summary/Keyword: FDM 3D 프린팅

Search Result 84, Processing Time 0.029 seconds

Study on Status of Utilizing 3D Printing in Fashion Field (패션분야의 3D 프린팅 활용 현황에 관한 연구)

  • Kim, Hyo-Sook;Kang, In-Ae
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.2
    • /
    • pp.125-143
    • /
    • 2015
  • This study has investigated the status of utilizing 3D printing in fashion field in order to keep up with the trend for 3D printing technology to be realized in all industries so that the materials and the modeling modes may be figured out. The following is the findings. The materials used most in 3D printing in fashion field are PA, PLA, TPU, multi-material, ABS and metal. PA, TPU and Multi-material have so much excellent flexibility and strength that they are widely used for garment, shoes and such fashion items as bags. But PLA, ABS and metal are scarcely used for garment because PLA is easily biodegradable in the air, ABS generates harmful gas in the process of manufacture and metal is not flexible, while all of these three are partly used for shoes and accessories. The modeling modes mainly applied for 3D printing in fashion field are SLS, SLA, FDM and Polyjet. SLS, which is of a powder-spraying method, is used for making 3D textile seen just like knitting. Polyjet method, which has higher accuracy and excellent flexibility, can be used for expressing diverse colors, and accordingly it is used a lot for high-quality garment, while SLA and FDM method are found to be mostly used for manufacturing shoes and accessories rather than for making garment because they are easily shrunk to result in deformation.

  • PDF

A Study on Types of 3D Printing Applications and Their Characteristics in Fashion Design (패션디자인의 3D 프린팅 적용 방법과 특성 연구)

  • Lee, Jung Soo
    • Journal of Fashion Business
    • /
    • v.24 no.4
    • /
    • pp.130-143
    • /
    • 2020
  • The development of three-dimensional (3D) printing technology is bringing new innovations to various fields such as health care, architecture, and fashion. 3D printing can be manufactured to suit the size of the consumer's body, modify the design to meet their tastes, and produce small quantities of various products. Therefore, 3D printing in the field of fashion has great potential. The purpose of this study was to investigate various application models of 3D printing for fashion design and analyze their characteristics after developing the fashion garment samples. First, the background of 3D printing was reviewed then, fashion designed by a 3D printing application was analyzed. As a result, four types of 3D printing applications were developed: object-attached, linkage, kinematics, and assembly. The object-attached type was the method of printing 3D material as an object in the intended shape and form and was attached to the garment by sewing. The linkage type referred to printing 3D material in small pieces of certain shapes that could be linked. The kinematics type was structures with hinges that could flex to fit the human body. The assembly type referred to developing 3D materials in female and male pieces such as nuts and bolts. By providing the advantages, disadvantages, trial-and-errors, and challenges of the 3D printing fashion design process, this study contributes to the effective applications and possibilities of future design.

An Adaptive Extrusion Control Technique for Faster FDM 3D Printing of Lithophanes (투명조각자기의 고속 FDM 3D 프린팅을 위한 가변 압출 기법)

  • Jang, Seung-Ho;Hong, Jeong-Mo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-201
    • /
    • 2017
  • This paper proposes how to solve a problem of FDM 3D printer's irregular output when changing volume of extrusion, adjusting movement speed of the printer's head and a way to fill new inner part. Existing slicers adjust directly to change the rotation speed of the stepper. In this method, the change of the extrusion area is delayed due to the gap between the stepper and the nozzle, so that precise control is difficult. We control the extrusion area adjusting the moving speed of the print head and making constantly the rotation speed of the stepper. Thus, the output time can be shortened by generating an efficient path having a short travel distance. For evaluation, we applied our method to lithophanes with detailed variation. Comparing existing methods, our method reduced output time at least 30%.

Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems (미세유체시스템 제작을 위한 3D 프린팅 방식 및 소재 별 표면특성 비교)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.706-713
    • /
    • 2019
  • In this study, basic research was conducted to provide guidelines for selecting printers and materials suitable for each application case by analyzing 3D printing method and surface characteristics of materials suitable for microfluidic system. We have studied the surface characteristics according to the materials for the two typical printing methods: The most commonly used method of Fused Deposition Modeling (FDM) printing and the relatively high resolution method of Stereolithography (SLA) printing. The FDM prints exhibited hydrophilic properties before post - treatment, regardless of the material, but showed hydrophobic properties after post - treatment with acetone vapor. It was confirmed by the observation of surface roughness using SEM that the change of the contact angle was due to the removal of the surface structure by post-treatment. SLA prints exhibited hydrophilic properties compared to FDM prints, but they were experimentally confirmed to be capable of surface modification using hydrophobic coatings. It was confirmed that it is impossible to make a transparent specimen in the FDM method. However, sufficient transparency is secured in the case of the SLA method. It is also confirmed that the electroporation chip of the digital electroporation system based on the droplet contact charging phenomenon was fabricated by the SLA method and the direct application to the microfluidic system by demonstrating the electroporation successfully.

Investigation of the Internal Stress Relaxation in FDM 3D Printing : Annealing Conditions (FDM 3D프린팅 어닐링 조건에 따른 내부응력 완화에 관한 연구)

  • Lee, Sun Kon;Kim, Yong Rae;Kim, Su Hyun;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.130-136
    • /
    • 2018
  • In this paper, the effects of different 3D printing parameters including laminated angle and annealing temperature, were observed for their effects on tensile testing. In 3D printing, a filament is heated quickly, extruded, and then cooled rapidly. Because plastic is a poor heat conductor, it heats and cools unevenly causing the rapid heating and cooling to create internal stress within the printed part. Therefore, internal stress can be removed using annealing and to increase tensile strength and strain. During air cooling at annealing temperature $140^{\circ}C$, the strain of laminated angle $45^{\circ}$ specimens tended to increase by 46% while the tensile stress tended to increase by 7.4%. During oven cooling at annealing temperature $140^{\circ}C$, the strain of laminated angle $45^{\circ}$ specimens tended to increase by 34% while the tensile stress tended to increase by 22.2%. In this study, we found "3D printing with annealing" eliminates internal stress and increases the strength and stiffness of a printed piece. On the microstructural level, annealing reforms the crystalline structures to even out the areas of high and low stress, which created fewer weak areas. These results are very useful for making 3D printed products with a mechanical strength that is suitable for applications.

Estimation of Process Window for the Determination of the Optimal Process Parameters in FDM Process (FDM 3D 프린터 최적 공정 변수 선정을 위한 공정 윈도우 평가법)

  • Ahn, Il-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.171-177
    • /
    • 2018
  • In 3D printing technologies, many parameters should be optimized for obtaining a part with higher quality. FDM (fused deposition modeling) printer has also diverse parameters to be optimized. Among them, it can be said that nozzle temperature and moving speed of nozzle are fundamental parameters. Thus, it should be preceded to know the optimal combination of the two parameters in the use of FDM 3D printer. In this paper, a new method is proposed to estimate the range of the stable combinations of the two parameters, based on the single line quality. The proposed method was verified by comparing the results between single line printing and multi-layered single line printing. Based on the comparison, it can be said that the proposed method is very meaningful in that it has a simple test approach and can be easily implemented. In addition, it is very helpful to provide the basic data for the optimization of process parameters.

3D Printing Characteristics of Automotive Hub using 3D Scanner and Reverse Engineering (3D 스캐너와 역설계를 활용한 자동차용 허브의 프린팅 특성)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.104-109
    • /
    • 2019
  • Reverse engineering techniques using 3D scanners and 3D printing technologies are being used in various industries. In this paper, the three-dimensional model is designed for automotive hub parts through 3D scanning and reverse engineering, and the design of hub parts is intended to be printed on FDM-style 3D printers to measure and analyze the dimensions of hub parts designed for reverse design and 3D printed hub parts. Experimental result have shown that the dimensions of 3D printed hub parts are small compared to those of the reverse-engineered dimensions, which are due to the shrinkage of filament materials in 3D printing.

Development of 3D Printing System for Human Bone Model Manufacturing Using Medical Images (의료 영상을 이용한 인체 골 모형 제작의 3차원 프린팅 시스템 개발)

  • Oh, Wang-Kyun
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.433-441
    • /
    • 2017
  • The 3D printing selective laser sintering (SLS) and stereo lithography apparatus (SLA) method used for bone model production has good precision and resolution, but the printers are expensive and need professional knowledge for operation. The program that converts computed tomography digital imaging and communications in medicine (DICOM) file into STL (stereolithography) file is also expensive so requesting 3D printing companies takes a lot of time and cost, which is why they are not generally utilized in surgery. To produce bone models of fractured patients, the use of 3D imaging conversion program and 3D printing system should be convenient, and the cost of device and operation should be low. Besides, they should be able to produce big size bone models for application to surgery. Therefore, by using an fused deposition modeling (FDM) method 3D printer that uses thermoplastic materials such as DICOM Viewer OsiriX and plastic wires, this study developed 3D printing system for Fracture surgery Patients customized bone model production for many clinics to use for surgery of fracture patients by universalizing with no limit in printing sizes and low maintenance and production cost. It is expected to be widely applied to the overall areas of orthopedics' education, research and clinic. It is also expected to be conveniently used in not only university hospitals but also regular general hospitals.

Evaluation of Metal Composite Filaments for 3D Printing (3D 프린팅용 금속 입자 필라멘트의 물성 및 차폐 능력 평가)

  • Park, Ki-Seok;Choi, Woo-Jeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.697-704
    • /
    • 2021
  • It is hard to get Filaments which are materials of the 3D printing Fused Deposition Modeling(FDM) method as radiation shielding in Korea. and also related research is insufficient. This study aims to provide basic data for the development of radiation shields using 3D printing by evaluating the physical properties and radiation shielding capabilities of filaments containing metal particles. after selecting five metal filaments containing metal particle reinforcement materials, the radiation shielding rate was calculated according to the Korean Industrial Standard's protective equipment test method to evaluate physical properties such as tensile strength, density, X-ray Diffraction(XRD), and weight measurement using ASTM's evaluation method. In the tensile strength evaluation, PLA + SS was the highest, ABS + W was the lowest, and ABS + W is 3.13 g/cm3 which value was the highest among the composite filaments in the density evaluation. As a result of the XRD, it may be confirmed that the XRD peak pattern of the particles on the surface of the specimen coincides with the pattern of each particle reinforcing material powder metal, and thus it was confirmed that the printed specimen contained powder metal. The shielding effect for each 3D printed composite filament was found to have a high shielding rate in proportion to the effective atomic number and density in the order of ABS + W, ABS + Bi, PLA+SS, PLA + Cu, and PLA + Al. In this study, it was confirmed that the metal particle composite filament containing metal powder as a reinforcing material has radiation shielding ability, and the possibility of using a radiation shielding filament in the future.

Proposal of finger splint design using design guidelines to reflect user requirements - Using FDM 3D printing technology - (사용자의 요구조건을 반영 할 수 있는 디자인 가이드라인을 이용한 손가락 보조기 디자인 제안 - FDM 방식의 3D 프린팅 기술을 이용하여 -)

  • Shin, I Yeol;Oh, Kwang Myung
    • Design Convergence Study
    • /
    • v.18 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • General finger splint manufactured and sold domestically could have been of great help to patients with disabilities due to damage to the body's. However, it reminded the wearer of his disability that he wanted to hide. This has had a negative effect on the psychological side of self-absorption and depression. If this avoids or rejects wearing, the role of ancillary rehabilitation is lost. This does not meet the user's requirements. Thus, in this study, 3D printing was used to better reflect user requirements. Next, the study examined existing prior studies to identify the characteristics and criteria of each study. It also examined medical finger aids that were being sold in the auxiliary device market. The assessment criteria were derived by compiling and interpreting user surveys of each finger splint device. Based on the evaluation criteria derived, the design guidelines for finger splint were presented using FDM-style 3D printers. Finally, we proposed a finger splint design according to the proposed design guideline.