• Title/Summary/Keyword: FDI Observer

Search Result 19, Processing Time 0.029 seconds

On the Fault Detection and Isolation Systems using Functional Observers (함수 관측자를 이용한 고장검출식별기법에 관한 연구)

  • Lee, Kee-Sang;Ryu, Ji-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.883-890
    • /
    • 2003
  • Two GOS (Generalized Observer Scheme) type Fault Detection Isolation Schemes (FDIS), employing the bank of unknown input functional observers (UIFO) as a residual generator, are proposed to make the practical use of the multiple observer based FDIS. The one is IFD (Instrument Fault Detection) scheme and the other is PFD (Process Fault Detection) scheme. A design method of UIFO is suggested for robust residual generation and reducing the size of the observer bank. Several design objectives that can be achieved by the FDI schemes and the design methods to meet the objectives are described. An IFD system is constructed for the Boeing 929 Jetfoil boat system to show the effectiveness of the propositions. Major contributions of this paper are two folds. Firstly, the proposed UIFO approaches considerably reduce the size of residual generator in the GOS type FDI systems. Secondly, the FDI schemes, in addition to the basic functions of the conventional observer-based FDI schemes, can reconstruct the failed signal or give the estimates of fault magnitude that can be used for compensating fault effects. The schemes are directly applicable to the design of a fault tolerant control systems.

FDI observer design for linear system via STWS

  • Ahn, Pius;Kim, Min-Hyung;Kim, Jae-Il;Lee, Moon-Hee;Ahn, Doo-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1423-1427
    • /
    • 1997
  • This paper deals with an algebraic approach to FDI observer design procedure. In general, FDI observer can be designed a sLuenbrger-type and equations for unknown input and actuator fault estimation include derivation of system outputs which is not available from the measurement directly. At this point, this paper presents STWS approach which can convert the derivation procedure to the recursive algebraic form by using its orthogonality and disjointess to alleviate such problems.

  • PDF

Fault Detection and Isolation of Sytem by using PI observer (비례적분(PI) 관측기를 이용한 시스템의 고장진단)

  • 김환성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.363-367
    • /
    • 1996
  • The robustness issues in fault detection and isolation(FDI) have received considerable attenuation in recent years, due to the increasing demand for safe and reliable operation of uncertain and complex dynamic systems. The aim of this paper is to present the FDI method by using proportional integral(PI) observer and unknown input observer(UIO) under the faults of actuators and sensors. Due to this simple residual generator, the PI observer can easily detect the both faults of actuator and sensor. A simulation results show the effectiveness of this methods.

  • PDF

ℋ_/ℋ Fault Detection and Isolation for Discrete-Time Delayed Systems (이산시간 상태지연 시스템을 위한 ℋ_/ℋ 고장검출 및 분리)

  • Jee, Sung-Chul;Lee, Ho-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.960-966
    • /
    • 2011
  • In this paper, an $\mathfrak{H}$_/$\mathfrak{H}_{\infty}$ fault detection and isolation (FDI) observer design problem is investigated for discrete-time delayed systems. To that end, a bank consisting of the sensor's number of observers is introduced. Each residual should be sensitive to a certain partial group of faults, but robust against the disturbance as far as possible. We formulate this multiobjective FDI problem as $\mathfrak{H}$_/$\mathfrak{H}_{\infty}$ observers design problem. Sufficient design condition is expressed as iterative linear matrix inequalities. The fault is then detected and isolated by evaluating the residuals through an FDI decision logic. A computer simulation is provided for verification of the proposed technique.

A Study on the Algebraic Analysis of FDI(failure detection and isolation) in Bilinear System (쌍일차계에 대한 FDI(고장검출 및 분리)의 대수적인 해석에 관한 연구)

  • In, Don-Gi;Cho, Young-Ho;Oh, Min-Hwan;Kim, Jae-Il;Chae, Young-Mu;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2627-2629
    • /
    • 2000
  • This paper introduces the design of a reduced order observer with unknown inputs for the purpose of fault detection and isolation(FDI) in a class of bilinear systems. To Analyze the observer and FDI, this paper uses BPF(block-pulse functions). The operational properties of BPF are much applied to the analysis of bilinear systems. The integral operational matrix BPF converts the form of the differential equation into the algebraic problems.

  • PDF

A Fuzzy Model Based Sensor Fault Detection Scheme for Nonlinear Dynamic Systems (퍼지모델을 이용한 비선형시스템의 센서고장 검출식별)

  • Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.407-414
    • /
    • 2007
  • A sensor fault detection scheme(SFDS) for a class of nonlinear systems that can be represented by Takagi-Sugeno fuzzy model is proposed. Basically, the SFDS may be considered as a multiple observer scheme(MOS) in which the bank of state observers and the detection & isolation logic are included. However, the proposed scheme has two great differences from the conventional MOSs. First, the proposed scheme includes fuzzy fault detection observers(FFDO) that are constructed based on the T-S fuzzy model that provides very good approximation to nonlinear dynamic systems. Secondly, unlike the conventional MOS, the FFDOS are driven not parallelly but sequentially according to the predetermined sequence to avoid the massive computational burden, which is known to be the biggest obstacle to the practical application of the multiple observer based FDI schemes. During the operating time, each FFDO generates the residuals carrying the information of a specified fault, and the corresponding fault detection logic unit performs the logical operations to detect and isolate the fault of interest. The proposed scheme is applied to an inverted pendulum control system for sensor fault detection/isolation. Simulation study shows the practical feasibility of the proposed scheme.

Fault Detection and Reconstruction for Descriptor Systems with Actuator and Sensor Faults

  • Yeu, Tae-Kyeong;Matsunaga, Nobutomo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2582-2587
    • /
    • 2003
  • This paper proposes an application of sliding mode observer to the problem of fault detection and reconstruction for descriptor systems with both actuator and sensor faults. In detecting and reconstructing the faults simultaneously, first, we will consider the fault detection problem for sensor fault. The detection of sensor fault is achieved from the design of the matrix which eliminates the influence of actuator fault. Secondly, the sliding mode observer which adds the general full-order observer for descriptor system to feedforward injection map and feedforward compensation signal is designed, and through which the sensor fault is reconstructed. Finally, with the reconstructed sensor fault, and by eliminating differential term of the sensor fault, the actuator fault is detected and reconstructed.

  • PDF

Speed and Current Sensor Fault Detection and Isolation Based on Adaptive Observers for IM Drives

  • Yu, Yong;Wang, Ziyuan;Xu, Dianguo;Zhou, Tao;Xu, Rong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.967-979
    • /
    • 2014
  • This paper focuses on speed and current sensor fault detection and isolation (FDI) for induction motor (IM) drives. A new, accurate and high-efficiency FDI approach is proposed so that a system can continue operating with good performance even in the presence of speed sensor faults, current sensor faults or both. The proposed three paralleled adaptive observers are capable of current sensor fault detection and localization. By using observers, the rotor flux and rotor speed can be estimated which allows the system to run under the speed sensorless vector control mode when a speed sensor fault occurs. In order to detect speed sensor faults, a threshold-based scheme is proposed. To verify the feasibility and effectiveness of the proposed FDI strategy, experiments are carried out under different conditions based on a dSPACE DS1104 induction motor drive platform.

Multiple Faults Detection and Isolation via Decentralized Sliding Mode Observer for Reconfigurable Manipulator

  • Zhao, Bo;Li, Chenghao;Ma, Tianhao;Li, Yuanchun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2393-2405
    • /
    • 2015
  • This paper considers a decentralized multiple faults detection and isolation (FDI) scheme for reconfigurable manipulators. Inspired by their modularization property, a global sliding mode (GSM) based stable adaptive fuzzy decentralized controller is investigated for the system in fault free, while for the system suffering from multiple faults (actuator fault and sensor fault), the decentralized sliding mode observer (DSMO) is employed to detect their occurrence. Hereafter, the time and location of faults can be determined by a fault isolation scheme via a bank of DSMOs. Finally, the effectiveness of the proposed schemes in controlling, detecting and isolating faults is illustrated by the simulations of two 3-DOF reconfigurable manipulators with different configurations successfully.

Observer-Based Robust Fault Diagnosis and Reconfigurable Adaptive Control for Systems with Unknown Inputs (미지입력을 포함한 시스템의 관측기 기반 견실고장진단 및 재구성 적응제어)

  • 최재원;이승우;서영수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.928-934
    • /
    • 2002
  • A natural way to cope with fault tolerant control (FTC) problems is to modify the control parameters according to an online identification of the system parameters when a fault occurs. However. due to not only difficulties Inherent to the online multivariable identification in closed-loop systems, such as modeling errors, noise or the lack of excitation signals, but also long time requirement to identify the post-fault system and implemeutation of control problems during the identification process, we propose an alternative approach based on the observer-based fault detection and isolation (FDI) and model reference adaptive control (MRAC). The proposed robust fault diagnosis method is based on a bank of observers. We also propose a model reference adaptive control with changeable reference models according to the occurred faults. Simulation results of a flight control example show the validity and applicability of the proposed algorithms.