• Title/Summary/Keyword: FDG

Search Result 694, Processing Time 0.025 seconds

The Effectiveness Evaluation of Reconstruction Method Using DFOV Position Changes for Reduction of Artifact Around Hotspot in PET/CT Images (PET/CT 검사에서 열소 주변 인공물 감소를 위한 DFOV 위치 변화 재구성 방법의 유용성 평가)

  • Han, Dong Chan;Hong, Gun Chul;Choi, Choon ki;Lee, Hyeok;Choi, Seong Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • Purpose: In the PET/CT images, various artifacts cause degradation of the quantitative assessment. Most hotspot generated by radiopharmaceutical injection errors cause an artifact and degrade the quality of the images as well as the accuracy of the quantitative evaluation. The purpose of this study is to assess effectiveness of the elimination of the hotspot at the injection sites using shifting the center of DFOV (Display Field of View, DFOV) method and evaluate the quantitative evaluation of result. Materials and Methods: GE Discovery STE 16 (GE Healthcare, Milwaukee, USA) and 1994 NEMA phantom were used for imaging acquisition. Phantom was filled with 0.005 MBq/mL of $^{18}F-FDG$. A hotspot was artificially placed on the outside of the phantom. The ratio of hotspot area activity to background area activity was regulated as 200:1. After image acquisition with routine protocol, all of the images were reconstructed using the shifting the center of DFOV method that wasn't overlapped with hotspot. Those images obtained before and after applying the shifting reconstruction method were compared. ROIs (Region Of Interests) were set in the hotspot areas, meanSUVs and standard deviations were calculated. Percentage differences were calculated with those meanSUVs and standard deviations. The evaluation on the effects of the shifting reconstruction method was done by comparison of the meanSUVs and the standard deviations, which were calculated for background areas unaffected by hotspot. Results: In the areas of unaffected by hotspot, meanSUVs before and after applying the shifting of center of DFOV method were $0.67{\pm}0.06g/mL$ and $0.65{\pm}0.06g/mL$, respectively. In the artifact areas affected by hotspot, meanSUVs before and after applying the shifting of center of DFOV method were $0.32{\pm}0.08g/mL$ and $0.56{\pm}0.12g/mL$, respectively. The percentage differences of the area adjacent to the hotspot and the area distant from the hotspot were 65.3% and 97.4%, respectively. Conclusion: In the PET/CT images, meanSUV was improved by 32.1% when the effect of artifact was removed with application of the shifting the center of DFOV methode. In other areas unaffected by artifacts, meanSUVs were not significantly different after applying DFOV center shift method. As shown in the result, adverse effects of hotspot made by swelling in the injection site can be reduced by applying DFOV center shift method. Therefore, DFOV center shift method can be applied for the more precise quantitative evaluation, and contribute to the increase of the diagnostic value of the images.

  • PDF

Study on Overcoming Interference Factor by Automatic Synthesizer in Endotoxin Test (내독소 검사에서 자동합성장치에 따른 간섭요인 극복에 대한 연구)

  • Kim, Dong Il;Kim, Si Hwal;Chi, Yong Gi;Seok, Jae Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.3-6
    • /
    • 2012
  • Purpose : Samsung medical ceter shall find a cause of the interference factor and suggest a solution for it. Materials and Methods : A sample of $^{18}F$-FDG, radioactive pharmaceuticals produced by TRACERlab MX and FASTlab synthesizer. Gel-clot method uses Positive control tube and single test tube. Kinetic chromogenic method uses ENDOSAFE-PTS produced by Charles River. Results : According to Gel clot method of Endotoxin Tests at FASTlab, both turbidity and viscosity increased at 40-fold dilution and Gel clot was detected. In case of TRACERlab MX, Gel clot was detected in most of samples but intermittently not in a few of them. When using ENDOSAFE-PTS, sample CV (Coefficient of Variation) of FASTlab is 0% at all dilution rates whereas spike CV is 0% at 1-fold dilution, 0~35% at 10-fold, 3.6~12.9% at 20-fold, 5.2~7.1% at 30-fold, 1.1~17.4% at 40-fold, spike recovery; 0% at one-fold, 25 ~ 58% at 10-fold, 50 ~ 86% at 20-fold, 70~92% at 30-fold, and 75~120% at 40-fold. Sample CV of TRACERlab MX, is 0% at all dilution rates whereas spike CV is 1.4~4.8% at one-fold dilution, 0.6~19.9% at 10-fold, spike recovery; 35~72% at one-fold dilution and 77~107% at 10-fold. Conclusion : Gel clot does not seem to occur probably to H3PO4 which engages in bonding with Mg2+ion contributing gelation inside PCT. Dilution which is identical to reducing the amount of H3PO4, could remove interfering effects accordingly. Spike recovery was obtained within 70~150% - recommended values of supplier - at 40-fold dilution even in kinetic chromogenic method.

  • PDF

Evaluation of Radioactivity Concentration According to Radioactivity Uptake on Image Acquisition of PET/CT 2D and 3D (PET/CT 2D와 3D 영상 획득에서 방사능 집적에 따른 방사능 농도의 평가)

  • Park, Sun-Myung;Hong, Gun-Chul;Lee, Hyuk;Kim, Ki;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.111-114
    • /
    • 2010
  • Purpose: There has been recent interest in the radioactivity uptake and image acquisition of radioactivity concentration. The degree of uptake is strongly affected by many factors containing $^{18}F$-FDG injection volume, tumor size and the density of blood glucose. Therefore, we investigated how radioactivity uptake in target influences 2D or 3D image analysis and elucidate radioactivity concentration that mediate this effect. This study will show the relationship between the radioactivity uptake and 2D,3D image acquisition on radioactivity concentration. Materials and Methods: We got image with 2D and 3D using 1994 NEMA PET phantom and GE Discovery(GE, U.S.A) STe 16 PET/CT setting the ratio of background and hot sphere's radioactivity concentration as being a standard of 1:2, 1:4, 1:8, 1:10, 1:20, and 1:30 respectively. And we set 10 minutes for CT attenuation correction and acquisition time. For the reconstruction method, we applied iteration method with twice of the iterative and twenty times subset to both 2D and 3D respectively. For analyzing the images, We set the same ROI at the center of hot sphere and the background radioactivity. We measured the radioactivity count of each part of hot sphere and background, and it was comparative analyzed. Results: The ratio of hot sphere's radioactivity density and the background radioactivity with setting ROI was 1:1.93, 1:3.86, 1:7.79, 1:8.04, 1:18.72, and 1:26.90 in 2D, and 1:1.95, 1:3.71, 1:7.10, 1:7.49, 1:15.10, and 1:23.24 in 3D. The differences of percentage were 3.50%, 3.47%, 8.12%, 8.02%, 10.58%, and 11.06% in 2D, the minimum differentiation was 3.47%, and the maximum one was 11.06%. In 3D, the difference of percentage was 3.66%, 4.80%, 8.38%, 23.92%, 23.86%, and 22.69%. Conclusion: The difference of accumulated concentrations is significantly increased following enhancement of radioactivity concentration. The change of radioactivity density in 2D image is affected by less than 3D. For those reasons, when patient is examined as follow up scan with changing the acquisition mode, scan should be conducted considering those things may affect to the quantitative analysis result and take into account these differences at reading.

  • PDF

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF

Evaluation of Average CT to Reduce the Artifact in PET/CT (PET/CT 검사에서 호흡에 따른 인공산물을 줄이기 위한 Average CT의 유용성)

  • Kim, Jung-Sun;Nam, Ki-Pyo;Park, Seung-Yong;Ryu, Jae-Kwang;Cha, Min-Kyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.3-7
    • /
    • 2010
  • Purpose: The usefulness of Positron Emission Tomography (PET) images in diagnosis, staging, recurrent and treatment response evaluation has already been known. However, tumors which are small size, located in lower lobe of lung or upper lobe of liver are shown misalignment, distortion and different Standard Uptake Value (SUV) by respiration in PET images. Therefore, if radiotherapy based on normal respiration, it may cause low treatment response or more side effects because targets which had to treat, out of treat range or over dose to normal tissue. The purpose of this study is to evaluate attenuation-correction with Average CT (ACT) for more accuracy SUV measurement and minimize artifact by respiration. Materials and Methods: 13 patients, who had tumors which are around the diaphragm, underwent ACT scan after Helical CT (HCT) scan with PET/CT (Discovery DSTE 8; GE Healthcare). We quantified the differences between attenuation corrected image with HCT and attenuation corrected image with ACT in artifact size and maximum SUV ($SUV_{max}$). Artifacts were evaluated by measurement of the curved photogenic area in the lower thorax of the PET images for all patients. $SUV_{max}$ was measured separately at the primary tumors. Analysis program was Advantage Workstation v4.3 (GE Healthcare). Patients were injected with 7.4 MBq (0.2 $mC_i$) per kg of $^{18}F$-FDG and scanned 1 hour after injection. The PET acquisition was 3 minute per bed. Results: Significantly lower artifact were observed in PET/ACT images than in PET/HCT images (below-thoracic artifacts caused by under corrected $1.5{\pm}3.5$ cm vs. $13.4{\pm}4.2$ cm). Significantly higher $SUV_{max}$ were noted in PET/ACT images than in PET/HCT images in the primary tumor. Compared with PET/HCT images, $SUV_{max}$ in PET/ACT images were higher by $5.3{\pm}3.9%$ (mean value) tumor. The highest difference was observed in Lower lobe of lung (7.7 to 8.7; 13%). Conclusion: Due to its significantly reduced artifacts in lower thoracic, attenuation corrected image with ACT images provided more reliable $SUV_{max}$ and may be helpful in monitoring treatment response. Moreover, ACT can separate upper lobe of liver and lower lobe of lung, it may be helpful in interpretation. ACT will be clinically useful, considering increased dose caused by ACT scan and adapt.

  • PDF

The Usefulness of Q.Clear Technique in PET / CT (PET/CT 검사에서 Q.Clear 기법의 유용성에 대한 고찰)

  • Choi, Yong Hoon;Kim, Jung Yul;Choi, Young Sook;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.31-36
    • /
    • 2017
  • Purpose Recently, the performance of PET/CT scanner has been improved and various techniques have been developed to increase the image quality such as Sensitivity and Resolution. The purpose of this study is to evaluate the usefulness of Q.Clear (a fully convergent iterative reconstruction) technique of GE Discovery IQ equipment to enhance the image quality. Materials and Methods All scans were acquired by Discovery IQ (GE Healthcare, MI, USA). In NEMA IEC Body Phantom test, Background to Hot-sphere (10 mm, 13 mm, 17 mm, 22 mm) ratio was 1:4 and scan time was 3 minutes. The images were reconstructed by VPHDs (VUE Point High-Definition + SharpIR) and Q.Clear to evaluate each Contrast. We injected 18F-FDG 187 M㏃ to PET/SPECT Performance Phantom. And then it was scanned for 4 minutes to evaluate Resolution and Uniformity. T-test statistical analysis was performed on SUVmax of small lesions less than 2 cm in 100 clinical patients regardless of disease type. Results In the NEMA IEC Body Phantom, the Contrast was $63.6{\pm}5.7%$ (VPHDs) and $75{\pm}4.8%$ (Q.Clear). In the PET/SPECT Performance Phantom, the Resolution was 9.2 mm (VPHDs) and 7.3 mm (Q.Clear). Uniformity of Q.Clear was 10.8% better than VPHDs. T-test statistic of the clinical patients showed a significant difference of p value of 0.021. Conclusion Both the phantom test and the clinical results showed that the quality of the image was improved in Q.Clear was applied. The SUVmax was highly measured in Q.Clear and the lesions were clearly distinguished visually. Therefore Q.Clear can be useful in various aspects such as dose-reduction, patients evaluation and image analysis.

  • PDF

Development of Artificial Pulmonary Nodule for Evaluation of Motion on Diagnostic Imaging and Radiotherapy (움직임 기반 진단 및 치료 평가를 위한 인공폐결절 개발)

  • Woo, Sang-Keun;Park, Nohwon;Park, Seungwoo;Yu, Jung Woo;Han, Suchul;Lee, Seungjun;Kim, Kyeong Min;Kang, Joo Hyun;Ji, Young Hoon;Eom, Kidong
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • Previous studies about effect of respiratory motion on diagnostic imaging and radiation therapy have been performed by monitoring external motions but these can not reflect internal organ motion well. The aim of this study was to develope the artificial pulmonary nodule able to perform non-invasive implantation to dogs in the thorax and to evaluate applicability of the model to respiratory motion studies on PET image acquisition and radiation delivery by phantom studies. Artificial pulmonary nodule was developed on the basis of 8 Fr disposable gastric feeding tube. Four anesthetized dogs underwent implantation of the models via trachea and implanted locations of the models were confirmed by fluoroscopic images. Artificial pulmonary nodule models for PET injected $^{18}F$-FDG and mounted on the respiratory motion phantom. PET images of those acquired under static, 10-rpm- and 15-rpm-longitudinal round motion status. Artificial pulmonary nodule models for radiation delivery inserted glass dosemeter and mounted on the respiratory motion phantom. Radiation delivery was performed at 1 Gy under static, 10-rpm- and 15-rpm-longitudinal round motion status. Fluoroscpic images showed that all models implanted in the proximal caudal bronchiole and location of models changed as respiratory cycle. Artificial pulmonary nodule model showed motion artifact as respiratory motion on PET images. SNR of respiratory gated images was 7.21. which was decreased when compared with that of reference images 10.15. However, counts of respiratory images on profiles showed similar pattern with those of reference images when compared with those of static images, and it is assured that reconstruction of images using by respiratory gating improved image quality. Delivery dose to glass dosemeter inserted in the models were same under static and 10-rpm-longitudinal motion status with 0.91 Gy, but dose delivered under 15-rpm-longitudinal motion status was decreased with 0.90 Gy. Mild decrease of delivered radiation dose confirmed by electrometer. The model implanted in the proximal caudal bronchiole with high feasibility and reflected pulmonary internal motion on fluoroscopic images. Motion artifact could show on PET images and respiratory motion resulted in mild blurring during radiation delivery. So, the artificial pulmonary nodule model will be useful tools for study about evaluation of motion on diagnostic imaging and radiation therapy using laboratory animals.

PET/CT SUV Ratios in an Anthropomorphic Torso Phantom (의인화몸통팬텀에서 PET/CT SUV 비율)

  • Yeon, Joon-Ho;Hong, Gun-Chul;Kang, Byung-Hyun;Sin, Ye-Ji;Oh, Uk-Jin;Yoon, Hye-Ran;Hong, Seong-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • The standard uptake values (SUVs) strongly depend on positron emission tomographs (PETs) and image reconstruction methods. Various image reconstruction algorithms in GE Discovery MIDR (DMIDR) and Discovery Ste (DSte) installed at Department of Nuclear Medicine, Seoul Samsung Medical Center were applied to measure the SUVs in an anthropomorphic torso phantom. The measured SUVs in the heart, liver, and background were compared to the actual SUVs. Applied image reconstruction algorithms were VPFX-S (TOF+PSF), QCFX-S-350 (Q.Clear+TOF+PSF), QCFX-S-50, VPHD-S (OSEM+PSF) for DMIDR, and VUE Point (OSEM) and FORE-FBP for DSte. To reduce the radiation exposure to radiation technologists, only the small amount of radiation source 18F-FDG was mixed with the distilled water: 2.28 MBq in the 52.5 ml heart, 20.3 MBq in the 1,290 ml liver and 45.7 MBq for the 9,590 ml in the background region. SUV values in the heart with the algorithms of VPFX-S, QCFX-S-350, QCFX-S-50, VPHD-S, VUE Point, and FOR-FBP were 27.1, 28.0, 27.1, 26.5, 8.0, and 7.4 with the expected SUV of 5.9, and in the background 4.2, 4.1, 4.2, 4.1, 1.1, and 1.2 with the expected SUV of 0.8, respectively. Although the SUVs in each region were different for the six reconstruction algorithms in two PET/CTs, the SUV ratios between heart and background were found to be relatively consistent; 6.5, 6.8, 6.5, 6.5, 7.3, and 6.2 for the six reconstruction algorithms with the expected ratio of 7.8, respectively. Mean SNRs (Signal to Noise Ratios) in the heart were 8.3, 12.8, 8.3, 8.4, 17.2, and 16.6, respectively. In conclusion, the performance of PETs may be checked by using with the SUV ratios between two regions and a relatively small amount of radioactivity.

Usefulness of wearing pocket dosimeter in nuclear medicine (핵의학 영상검사에서 Pocket dosimeter 착용의 유용성 평가)

  • Kim, Young-Bin;Lee, Eun-Ji;Kim, Kun-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.25-28
    • /
    • 2011
  • Purpose: The aim of study is to find accuracy of pocket dosimeter in measuring exposed dose in compared with survey meter and to compare exposed dose according as Nuclear medicine exams. Materials and Method: First, radiation dose to point source(185 MBq,370 MBq, ${\ldots}$, 1665 MBq, 1850 MBq) were measured in using a pocket dosimeter and a survey meter. Second, radiation dose to 12 patients injected $^{18}F$-FDG 370 MBq were measured in using a pocket dosimeter and a survey meter. Third, radiation dose to 10 patients injected $^{99m}Tc$-DPD 925 MBq were measured in using a pocket dosimeter and a surveymeter. Result: The average is $70.12{\pm}39.36{\mu}Sv/h$ in measurement of point source with Surveymeter and $5{\pm}3.06{\mu}Sv$ in measurement of point source with Pocket dosimeter. The average is $25.04{\pm}6.16{\mu}Sv/h$ in measurement of PET/CT patients with Surveymeter and $2.41{\pm}0.51{\mu}Sv$ in measurement of PET/CT with Pocket dosimeter. The average is $8.58{\pm}0.96{\mu}Sv/h$ in measurement of Bone Scan patients with Surveymeter and $1{\mu}Sv$ in measurement of Bone Scan patients with Pocket dosimeter. Significant difference found between Survey meter value and Pocket dosimeter value in all experimentation (p<0.001). Conclusion: Accoring to rusult Wearing Pocket dosimeter is usefulnee in manerage of exposed dose in nucler medicine exams.

  • PDF

A Comparative Analysis of Standard Uptake Value Using the Recovery Coefficient Before and After Correcting Partial Volume Effect (부분 체적 효과에서 회복 계수를 이용한 보정 전과 후 SUV의 비교 분석)

  • Ko, Hyun-Soo;Park, Soon-Ki;Choi, Jae-Min;Kim, Jung-Sun;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • Purpose: The partial volume effect occurs because of limit of the spatial resolution. It makes partial loss of intensity and causes SUV to be lower than it should actually be. So the purpose of this study is to calculate recovery coefficient for correcting PVE from phantom study and to compare before and after SUV correction applying to PET/CT examination. Materials and Methods: The flangeless Esser PET phantom consisting of four hot cylinders was used for this study. All of the hot cylinders were filled with FDG solution of 20.72 MBq per 1000 ml, and the phantom background was filled with FDG solution of different concentrations (33.30, 22.20, 16.65 MBq per 6440 ml) to yield H/B ratios of around 4:1, 6:1 and 8:1. Using the Biograph Truepoint 40(SIEMENS, Germany), we applied recovery coefficient method to 30 patients who were diagnosed with lung cancer after PET/CT exam. And then we analyzed and compared SUV before and after correcting partial volume effect. Results: The smaller the diameter of hot cylinder becomes, the more recovery coefficient decreased. When we applied recovery coefficient to clinical patients and compared SUV before and after correcting PVE, before the correction all lesions gave an average max SUV of 7.83. And after the correction, the average max SUV increases to 10.31. The differences in the max SUV between before and after correction were analyzed by paired t test. As a result, there were statistically significant differences (t=7.21, p=0.000). Conclusion: The SUV for quantification should be measured precisely to give consistent information of tumor uptake. But PVE is one of factors that causes SUV to be lower and to be underestimated. We can correct this PVE and calculate corrected SUV using the recovery coefficient from phantom study. And if we apply this correction method to clinical patients, we can finally assess and provide quantitative analysis more accurately.

  • PDF