The Usefulness of Q.Clear Technique in PET / CT

PET/CT 검사에서 Q.Clear 기법의 유용성에 대한 고찰

  • Choi, Yong Hoon (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Kim, Jung Yul (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Choi, Young Sook (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Lim, Han Sang (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Kim, Jae Sam (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System)
  • 최용훈 (연세의료원 세브란스병원 핵의학과) ;
  • 김정열 (연세의료원 세브란스병원 핵의학과) ;
  • 최영숙 (연세의료원 세브란스병원 핵의학과) ;
  • 임한상 (연세의료원 세브란스병원 핵의학과) ;
  • 김재삼 (연세의료원 세브란스병원 핵의학과)
  • Received : 2017.09.29
  • Accepted : 2017.10.20
  • Published : 2017.11.11

Abstract

Purpose Recently, the performance of PET/CT scanner has been improved and various techniques have been developed to increase the image quality such as Sensitivity and Resolution. The purpose of this study is to evaluate the usefulness of Q.Clear (a fully convergent iterative reconstruction) technique of GE Discovery IQ equipment to enhance the image quality. Materials and Methods All scans were acquired by Discovery IQ (GE Healthcare, MI, USA). In NEMA IEC Body Phantom test, Background to Hot-sphere (10 mm, 13 mm, 17 mm, 22 mm) ratio was 1:4 and scan time was 3 minutes. The images were reconstructed by VPHDs (VUE Point High-Definition + SharpIR) and Q.Clear to evaluate each Contrast. We injected 18F-FDG 187 M㏃ to PET/SPECT Performance Phantom. And then it was scanned for 4 minutes to evaluate Resolution and Uniformity. T-test statistical analysis was performed on SUVmax of small lesions less than 2 cm in 100 clinical patients regardless of disease type. Results In the NEMA IEC Body Phantom, the Contrast was $63.6{\pm}5.7%$ (VPHDs) and $75{\pm}4.8%$ (Q.Clear). In the PET/SPECT Performance Phantom, the Resolution was 9.2 mm (VPHDs) and 7.3 mm (Q.Clear). Uniformity of Q.Clear was 10.8% better than VPHDs. T-test statistic of the clinical patients showed a significant difference of p value of 0.021. Conclusion Both the phantom test and the clinical results showed that the quality of the image was improved in Q.Clear was applied. The SUVmax was highly measured in Q.Clear and the lesions were clearly distinguished visually. Therefore Q.Clear can be useful in various aspects such as dose-reduction, patients evaluation and image analysis.

최근 PET/CT 장비의 성능의 발전과 다양한 기법의 개발로 민감도와 해상도등 영상 품질을 개선할 수 있게 되었다. 본 논문에서는 GE사의 Discovery IQ 장비의 Q.Clear (a fully convergent iterative reconstruction) 기법을 이용하여 영상의 질 향상에 유용성이 있는지 알아보고자 한다. 장비는 Discovery IQ (GE Healthcare, MI, USA)를 사용하였다. NEMA IEC Body Phantom의 배후방사능과 열소 체적(10 mm, 13 mm, 17 mm, 22 mm)의 비를 1:4로 하고 3분간 촬영하여 VPHDs (VUE Point High-Definition SharpIR)와 Q.Clear의 대조도를 비교 분석하였다. PET/SPECT Performance Phantom에 $^{18}F-FDG$를 187 MBq을 주입 후 4분간 촬영하여 해상도와 균일도를 비교 분석하였다. 그리고 100명의 임상 환자에서 질환의 종류와 상관없이 2 cm 미만의 작은 병소의 SUVmax를 측정하여 t-test 통계분석하였다. NEMA IEC Body Phantom에서 VPHDs와 Q.Clear의 대조도가 $63.6{\pm}5.7%$, $75{\pm}4.8%$로 나왔고 PET/SPECT Performance Phantom에서 해상도는 VPHDs가 9.2 mm, Q.Clear가 7.3 mm로 나왔다. 균일도는 Q.Clear가 10.8% 더 우수하였다. 임상 환자의 t-test 통계 결과 p-value가 0.021로 유의한 차이가 있었다. 임상환자에서 SUVmax는 Q.Clear에서 높게 측정 되었으며, 신호대 잡음 비도 우수하였다. 이는 부분체적효과의 영향을 줄였기 때문으로 볼 수 있다. Phantom test와 임상 환자의 결과 모두 Q.Clear를 적용 하였을 때 영상품질이 향상된 것을 확인하였다. 이러한 영상 품질 향상은 병소를 더욱 정확하게 발견할 수 있고 나아가 선량저감과 환자평가 그리고 영상 분석 등 다양한 방면에서 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. 고창순. 고창순 핵의학. 제3판. 고려의학. 2008. P95-104.
  2. Marine Soret, Stephen L. Bacharach, and Irene Buvat. Partial-Volume Effect in PET Tumor Imaging. J Nucl Med. 2007;48:932-945. https://doi.org/10.2967/jnumed.106.035774
  3. Steve Ross. Q.Clear. Available at: http://www3.gehealthcare.com/en/search?q=Qclear&u=http://www3.gehealthcare.com/en/search?q=steve%20ross&u=http://www3.gehealthcare.com/en. 2013 General Electric Company-All rights reserved.
  4. C-T.Chen, V. E. Johnson, W. H. Wong, X. Hul, and C. E. Metz, Bayesian Image Reconstruction in Positron Emission Tomography, IEEE Transactions on Nuclear Science. 1990;37(2):636-641. https://doi.org/10.1109/23.106690
  5. E.U. Mumcuoglu, R. Leahy, S.R.Cherry, Z. Zhou, Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images, IEEE Transactions on Medical. Imaging. 1994;13(4):687-701. https://doi.org/10.1109/42.363099
  6. A. R. De Pierro and M. E. B. Yamagishi, Fast EM-like methods for maximum 'a posteriori' estimates in emission tomography, IEEE Transactions on Medical Imaging. 2001;20:280-288. https://doi.org/10.1109/42.921477
  7. S. Ahn and J.A. Fessler, Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms, IEEE Transactions on Medical Imaging. 2003;22(5):613-26. https://doi.org/10.1109/TMI.2003.812251
  8. E. Asma, S. Ahn, S. Ross, A. Chen, and R. Manjeshwar, Accurate and consistent lesion quantitation with clinically acceptable penalized likelihood images, IEEE Nuclear Science Symposium Conference Record. 2012;23(7):4062-4066