• Title/Summary/Keyword: FCS(Fire Control System)

Search Result 13, Processing Time 0.023 seconds

Naval Gun Fire Control System Simulation for Verification Depending on Development Phase (함포 사격통제시스템 검증을 위한 시뮬레이션 환경 구축 및 개발진행단계에 따른 적용 방안 연구)

  • Kim, Eui-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2011
  • Naval Gun FCS(Fire Control System) is the most fundamental weapon system in Naval Combat System. Simulationbased verification of FCS is mandatory before sea trial since ballistic solution needs complicated process and uses almost all information produced by own ship sensors. The FCS simulation method is proposed for verification of naval gun FCS and applicable to the FCS design depending on combat system development phase based on available data in each design phase. Verified FCS through proposed simulation method is adapted in real naval combat system and the performance has been proven by sea trial.

Designing a Common Weapon Interface Module While Taking into Account the Fire Control System Architecture of a Light Armed Helicopter (소형무장헬기 사격통제시스템의 구조를 고려한 공통 무장 인터페이스 모듈 설계)

  • Lee, Dongho;Park, Hanjoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1088-1093
    • /
    • 2014
  • The structure of the fire control system(FCS) of a light armed helicopter and effective logistics support was taken into account in the proposed common weapon interface module(CWIM) for a distributed FCS. The pros and cons of a distributed FCS and a centralized FCS were analyzed, then a CWIM which can be applied to the weapon interface module of a distributed FCS was designed and fabricated. Integration tests between the proposed CWIM and a weapon simulator were conducted to ascertain whether or not the proposed CWIM could be applicable to a distributed FCS. We expect that the CWIM design approach method secured through this study will be helpful in mitigating cable work of the FCS which will be applied to a Light Armed Helicopter and controlling various weapons.

Stabilization of elevation for gunner primary sight using variable structure control (가변구조제어에 의한 조준경 고각 안정화)

  • 김중완;이정규;김주상;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.643-647
    • /
    • 1990
  • Gunner primary sight(GPS) stabilization system lays line of sight(LOS) to find out a target and transmits informations to the fire control system (FCS). In a moving vehicle, accuracy of LOS and FCS depends on the design of GPS and servomechanism system. The heavy vibration of vehicle on the severe off-road environment degenerates the stabilization capability of GPS. In this study, to stabilize of elevation for GPS using the variable structure control, we derived the dynamic equation of GPS system and designed the variable structure controller. Computer simulation results fulfilled the static and dynamic stability of GPS using the variable structure control.

  • PDF

A Study on Crack Formation in the K11 Objective Individual Combat Weapon Fire Control System using Analysis of Variance (분산분석을 활용한 K11 복합형소총 사격통제장치 균열발생 원인 연구)

  • Shin, Sang-Sik;Kim, Byeong Kyu;Sim, Chul Bo
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.289-298
    • /
    • 2015
  • Purpose: This study examined the problem of crack formation in the fire control system(FCS) of the K11 objective individual combat weapon(OCIW), using design of experiment analysis. Three hypothesis were considered. The first hypothesis is that bolted joint has an effect on impulse caused by firing the weapon and the second hypothesis is that a short time interval of shooting has an effect on impulse and lastly, the third hypothesis is that a positive correlation has between the bolted joint of the FCS and the impulse. Methods: The relationship between the bolted joint and the impulse cause by firing the weapon were examined experimentally. The first and second hypothesis was tested using correlation analysis and the t-test. Results: Using ANOVA, the first null hypothesis was rejected and the alternative hypothesis was accepted. ANONA confirmed the second null hypothesis. Correlation analysis dismissed the last null hypothesis. A positive correlation between the bolted joint and the impulse caused by shooting the weapon was verified. Conclusion: The bolted joint of the K11 FCS and the barrel of the K11 affect the impulse caused by firing the weapon. A positive correlation was established between the bolted joint of the FCS and the impulse on firing the K11 OICW.

Performance Improvement Approach to Naval Gun Fire Control System Based on Linear Target Tracking Filter with Radar Line-of-sight Measurements (레이다 시선 측정치를 활용하는 선형 표적 추적필터 기반 함포 사격제원계산장치 성능향상 방법)

  • Uisuk Suh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.446-456
    • /
    • 2024
  • This paper addresses a novel approach to performance enhancement of the naval gun fire control system(FCS) by using the projectile tracking filter without any distortion of radar measurements. Under the assumption that the maneuvering between the projectile and the ship equipped with the radar is not quite large, this method is based on the concept of polar-coordinate target tracking, which separates the range estimation filter and the direction cosine estimation filter. Note that using polar-coordinates allows tracking to be performed in the same coordinate system from which the radar line-of-sight(LOS) measurements are obtained, unlike the conventional tracking process in Cartesian. Also, it is easy to implement in real-time and guarantees consistent estimates due to its linear filter structure. With the help of the above method, therefore, the proposed filter is able to improve the overall performance of FCS which requires stability of projectile estimates within a short engagement time. The effectiveness of the presented scheme is validated through computer simulations.

Gun-oriented Engagement Simulation System (함포교전 시뮬레이션 시스템)

  • Lee, Dong-Hoon;Kim, Cheol-Ho;Kim, Tae-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.78-85
    • /
    • 2007
  • A gun is still one of the major weapons of a combat ship. To assess the ship's fire control capability which is influenced by tracking system, fire control algorithm, gun, the ship itself, target behavior, environment and engagement situation, simulation system for gun-oriented engagement for surface ship is needed. This paper proposes the process for designing and implementing a gun-oriented engagement simulation system using DEVS(Discrete Event Simulation Specification), which is a formalism based on the set theory. It consists of the following activities : 1) analyzing the characteristics of a gun-oriented engagement, 2) constructing the deterministic model of the combat ship of study with DEVS, 3) modeling properties of each entity showing as stochastic errors. With this process, the gun-oriented engagement simulation system is developed and applied for the combat system under development.

Implementation of a Sequence Controller for a Rocket Fire Control System through Processor-Hot Backup System (프로세서 이중화를 통한 로켓 발사통제시스템 시퀀스 컨트롤러 구현)

  • 문경록;김재문
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2795-2798
    • /
    • 2003
  • 본 논문에서는 국내에서 개발하고 있는 과학로켓용 발사통제시스템(FCS, Fire Control System)의 시퀀스제어의 처리 영역을 PLC 시스템을 사용하여 구현하였다. 프로세서의 이중화를 통하여 Hot Backup 시스템을 구축하고 ControlNet 네트워크[l][2]를 기반으로 하는 프로세서와 I/O 간의 통신을 이용하였다. 먼저 로켓 발사통제시스템의 개요 및 주요 임무에 대하여 설명하고 기존에 사용된 발사통제시스템 구성을 분석하였다. PLC 시스템의 개요와 CPU 동작 내용 그리고 ControlNet 통신방식에 대하여 설명하고 프로세서를 이중화한 시스템을 제안하였다. 또한 이중화된 프로세서의 Switchover[2]방법을 알아보고 이러한 조건에 따른 PLC 시스템을 응용한 발사 통제시스템을 구성하여 이를 위해 작성된 시스템 운용 Ladder Diagram 프로그램에 대한 기술을 논하였다. 개발된 PLC 시스템의 구성을 제시하고 발사체 및 각종 지원시설과 연계한 시험을 통하여 성능을 검증하였다.

  • PDF

A Study on the Development Method of the Domestic New Generation Multiple Launcher Rocket System (국내 차기 다련장 로켓 개발방안에 대한 고찰)

  • Cho, Ki-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.21-29
    • /
    • 2008
  • Korean army currently considers the development of the advanced MLRS(Multiple Launcher Rocket System) as a new alternative, which responses on the renovation of the artillery and future battle field environment. Therefore, This study suggests that the development methods of MLRS based on the analysis of the future battle field environment, world wide development trends of the MLRS and operation states of the domestic MLRS. According to this study, the development methods of new generation MLRS should be included a 230/130mm combined launcher competible with conventional 227mm on the vehicle, advanced FCS(Fire Control System), GPS/INS integration navigation system, Pod of ammunitiom, ammunition carrring vehicle and guided rocket munitions, etc.

The Study on The Production Testing Equipment for the Improvement of System Test Reliability in FCS (사격통제장치 시스템 시험의 신뢰성 향상을 위한 생산시험장비에 관한 연구)

  • Choi, Kyungjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.139-147
    • /
    • 2016
  • This study described the design scheme for each step of the production test for the Fire Control System(FCS) of the K-55A1 PIP business of Hanwha Thales since 2011. From the time of receipt of the product It is necessary to improve the FCS's reliability by using the Unit Test, burn-In test, System Test. FCS of K-55A1 acts as a 'head' that control the self-propelled howitzer, and connected with the electrical and physical connection of self-propelled howitzer's multiple unit (Inertial navigation systems(IN), Muzzle Velocity Radar (MVR)) for the normal operation without an inch of error in operating. We designed the production testing equipment automatically as much as possible and designed with the environment similar to the self-propelled howitzer. by using this production testing equipment, It should help for the strengthen national defense of the Republic of Korea.

Motion Profile Generation Method for Absolute Angular Error Control Mode of Gun/Turret Driving System (포/포탑 구동 시스템의 절대 각 오차 제어 모드에 대한 모션 프로파일 생성 기법)

  • Eom, Myunghwan;Song, Sinwoo;Park, Ilwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.674-686
    • /
    • 2019
  • In this paper, we will discuss the absolute angular error control mode for the Gun/Turret driving system. The Gun/Turret driving controller receives absolute angular error calculated from the fire control system (FCS). Thus, the Gun/Turret driving controller is subjected to step command to cause residual vibration and system unstable. In order to reduce residual vibration and to ensure the system stability, we propose an error motion profile method with two types of trapezoidal and S-Curve. The validity of the proposed error motion profile method is confirmed via simulation by observing that the resulting position error, driving power, and power density satisfied the control performance.