퍼지 클러스트링은 전통적인 FCM을 이용하여 수행될 수 있다 그러나 FCM을 사용하는데 있어서 고려해야 할 문제점은 크게 두가지이다. 첫째는 FCM은 초기 멤버쉽 함수의 지정에 민감하고, 둘째는 FCM 알고리듬의 수행에는 클러스터의 개수를 미리 지정 해 주어야 한다는 것이다. 따라서 FCM과 동시에 수행하여야 할 과제는 클러스터의 개수를 찾기 위하여 타당성 척도를 이용한 시뮬레이션을 수행하여야 한다. 본 논문에서는 위의 두 가지 문제점을 동시에 해결 할 수 있는 FCM 알고리듬을 제시하고, 그 적용성을 시뮬레이션을 통하여 검증한다. 본 논문의 기여도는 MV-FCM 알고리듬의 제시와 이 알고리듬의 타당성 척도로써의 효율성이다.
클러스터링을 이용한 대표적인 영상 분할 방법으로 Fuzzy C-Means(FCM) 알고리즘을 많이 사용하는데, FCM은 영상의 공간을 픽셀 값이 비슷한 클러스터 영역으로 분할하므로 분할 시간이 많이 소요된다. 특히 웹이 보편화된 현재 사용자들의 다양한 패턴을 분석하기 위한 처리 속도 문제는 더욱 중요하다. 이러한 속도 문제를 해결하기 위해 본 논문에서는 Otsu의 영상 히스토그램의 임계값과 FCM으로 영상을 분할하는 개선된 FCM(Improved FCM : IFCM) 알고리즘을 제안한다. 제안방법은 Otsu의 클래스 간의 분산을 최대화 시키는 임계값을 결정하여 FCM에 적용하고 영상을 분할하였다. IFCM은 기존의 FCM에 비해 영상 분할 시간을 단축시켜 성능이 향상되었음을 실험을 통해 보인다.
Fuzzy c-means(FCM)는 퍼지 집합을 응용한 간단하지만 효율적인 클러스터링 방법 중 하나이다. FCM은 여러 응용 분야에서 성공적으로 활용되어 왔지만, 초기화와 잡음에 민감하고 볼록한 형태의 클러스터들만 다룰 수 있는 문제점이 있다. 이 논문에서는 이러한 FCM의 문제점을 해결하기 위해 전역 클러스터링(global clustering) 기법과 커널 클러스터링(kernel clustering) 기법을 결합하여 새로운 비선형 클러스터링 기법인 커널 전역 FCM(kernel global fuzzy c-means, KG-FCM)을 제안한다. 전역 클러스터링은 클러스터링의 초기화를 위한 방법 중 하나로, 순차적으로 클러스터를 하나씩 추가함으로써 초기화에 민감한 FCM의 한계를 극복할 수 있도록 해준다. FCM의 잡음 민감성과 볼록한 클러스터들만 다룰 수 있는 한계를 극복하기 위한 방법은 여러 가지가 있으며 커널 클러스터링이 그 중 하나이다. 커널 클러스터링은 사용하는 커널을 바꿈으로써 쉽게 확장이 가능하므로 이 논문에서는 커널 클러스터링을 사용하였다. 두 방법을 결합함으로써 제안한 방법은 위에서 언급한 문제점들을 해결할 수 있으며, 이는 가상 및 실제 데이터를 이용한 실험 결과를 통해 확인할 수 있다.
FCM(Fuzzy C-Means)으로 대표되는 퍼지 클러스터링은 간단하면서도 효율적인 클러스터링 방법이지만, FCM에서 사용하는 목적 함수에서는 밀도가 높은 클러스터가 클러스터링 결과에 많은 영향을 미치도록 함으로써 클러스터 사이의 밀도 차에 의해 클러스터링 결과에 왜곡이 발생할 수 있다. 이러한 밀도 문제를 완화하는 방법의 하나로 FCM의 목적 함수에 밀도 차이를 보정할 수 있는 항을 추가한 EDI-FCM(Extended Density-Independent FCM)이 있다. 이 논문에서는 레귤러라이제이션을 이용하여 EDI-FCM을 보완한 Regularized EDI-FCM을 제안한다. 레귤러라이제이션은 해공간을 평탄화하고 잡음 민감성을 줄이기 위해 흔히 사용되는 방법으로, 클러스터링에서는 특정 클러스터가 클러스터링 결과에 미치는 영향을 줄이는 역할을 한다. 제안하는 방법은 FCM이나 EDI-FCM과 비교했을 때 실제 클러스터 중심에 빠르고 정확하게 수렴한다는 것을 실험 결과를 통해 확인할 수 있다.
FCM 클러스터링 알고리즘은 대표적인 분할기반 군집화 알고리즘이며 다양한 분야에서 성공적으로 적용되어 왔다. 그러나 FCM 클러스터링 알고리즘은 잡음 및 지역 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제, 초기 원형과 클러스터 개수 설정 문제 등이 존재한다. 본 논문에서는 FCM 알고리즘의 결과를 해당 속성의 데이터 축에 사상하여 퍼지구간을 결정하고, 결정된 퍼지구간을 FDT에 적용함으로써 FCM 알고리즘이 가지는 문제 중 잡음 및 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제를 개선하는 시스템을 제안한다. 또한 실제 교통데이터와 강수량 데이터를 이용한 실험을 통하여 제안 모델과 FCM 클러스터링 알고리즘을 비교한다. 실험 결과를 통해 제안 모델은 잡음 및 데이터에 대한 민감도를 완화시킴으로써 보다 안정적인 결과를 제공하며, FCM 클러스터링 알고리즘을 적용한 시스템보다 직관적인 결과와의 일치율을 높여줌을 알 수 있다.
본 논문에서는 Kernel based Fuzzy C-Means(K-FCM) 기반 양자화 기법을 적용하여 의료 초음파 영상에서 특징을 분할하는 기법을 제안한다. 결절종의 경우에는 초음파 영상 내에서 무에코, 저에코의 특징을 가진 낭포성 종양 객체를 특징 영역으로 영상을 분할한다. K-FCM 클러스터링은 기존의 FCM 클러스터링에서 Kernel Function을 적용한 형태의 클러스터링 기법이다. 본 논문에서는 Gaussian Kernel 기반 K-FCM을 적용하여 의료 초음파 영상에서 특징들을 분할하였다. 결절종 초음파 영상에서는 FCM 클러스터링이 F1 Score가 85.574%로 나타났고, K-FCM이 86.442%로 나타났다.
본 논문에서는 FCM 기반 RBF 뉴럴네트워크(FCM-RBFNN) 구조를 제안하고 PSO를 이용한 FCM-RBFNN의 구조 및 파라미터의 최적화 방법을 제시한다. 클러스터링 알고리즘은 퍼지 뉴럴 네트워크에서 멤버쉽함수의 중심점과 반경 등을 결정하는 학습에 일반적으로 사용된다. 제안된 FCM-RBFNN서는 방사기저함수로써 가우시안, 삼각형 타입 등의 정해진 형태를 사용하지 않고 데이터들 사이의 거리에 관계된 계산을 수행하는 FCM에 의해 결정된다. 기존의 RBFNN에서 후반부는 상수형태로써 방사기저함수의 선형결합으로써 표현되는 반면에 제안된 FCM-RBFNN의 후반부는 상수형, 선형, 2차식 등의 다양한 형태의 다항식으로 표현될 수 있으며 다항식의 계수는 WLSE를 이용하여 추정한다. FCM 기반 RBF 뉴럴 네트워크의 성능은 퍼지규칙의 수, 후반부 다항식의 차수 FCM의 퍼지화 계수에 의하여 결정기 때문에 FCM-RBFNN의 구조와 파라미터의 최적화가 요구된다. 본 논문에서는 PSO를 이용하여 FCM-RBFNN의 구조에 관련된 퍼지 규칙의 수, 후반부 다항식의 차수와 파라미터에 관련된 퍼지화 계수를 최적화한다. 또한 후반부 다항식의 계수는 WLSE를 사용하여 추정한다.
FCM 알고리즘은 반복 최적화 기법을 통해 최적해를 찾는다. 특히, 클러스터링 초기 중심과 잡음의 위치, 몰려있는 밀도의 위치, 개수에 따라 실행시간 차이가 난다. 하지만 이 방법은 중심점을 점차 갱신해 나가는 방법으로 초기 클러스터 중심이 한 쪽으로 치우치게 되고 클러스터링 결과의 편차가 심해 클러스터링 대푯값의 신뢰도가 떨어진다. 따라서 본 논문에서는 삼각부등식을 이용하여 클러스터 간 거리를 최대한 멀어지게 하여 클러스터 중심 밀도를 결정하는 TI-FCM(Triangular Inequality-Fuzzy C-Means:삼각부등식-FCM)클러스터링 알고리즘을 제안한다. 제안된 방법은 대용량의 빅데이터에서도 FCM에 비해 실제 클러스터에 수렴하는 효과적인 방법이고 실험을 통해 기존 FCM보다 실행시간이 감소됨을 보였다.
본 논문에서는 FCM알고리즘과 평균내부거리를 적용한 퍼지 클러스터링 알고리즘의 문제점을 해결하기 위하여 개선된 FCM 알고리즘을 제안한다. 개선된 FCM 알고리즘은 내부클러스터를 이용하여 클러스터 크기가 다른 경우에도 크기가 작은 클러스터에 일정한 소속정도를 부여할 수 있다. 그리고 이에 맞는 목적함수를 설계하고 검증한 후 데이터 분류에 사용하기 때문에 목적함수의 수렴성 문제를 극복할 수 있다. 그러므로 클러스터 크기가 다른 경우에 발생하는 FCM 알고리즘의 문제점과 목적함수의 수렴성에 문제가 있는 평균내부거리를 적용한 퍼지 클러스터링 알고리즘의 문제점을 해결할 수 있다. 제안한 알고리즘을 검증하기 위하여 제안한 알고리즘을 이용하여 데이터를 분류한 결과를 FCM 알고리즘, 평균 내부거리를 적용한 퍼지 클러스터링 알고리즘을 이용하여 데이터를 분류한 결과와 각각 비교하였다. 실험을 통하여 제안한 알고리즘으로 데이터를 분류할 경우 분류 엔트로피에 의해 기존의 알고리즘들보다 더 좋은 결과를 나타냄을 알 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권9호
/
pp.4336-4354
/
2018
Fuzzy C-means (FCM) algorithm is a most usually technique for medical image segmentation. But conventional FCM fails to perform well enough on magnetic resonance imaging (MRI) data with the noise and intensity inhomogeneity (IIH). In the paper, we propose a Gamma correction conditional FCM algorithm with spatial information (GcsFCM) to solve this problem. Firstly, the pre-processing, Gamma correction, is introduced to enhance the details of images. Secondly, the spatial information is introduced to reduce the effect of noise. Then we introduce the effective neighborhood mechanism into the local space information to improve the robustness for the noise and inhomogeneity. And the mechanism describes the degree of participation in generating local membership values and building clusters. Finally, the adjustment mechanism and the spatial information are combined into the weighted membership function. Experimental results on four image volumes with noise and IIH indicate that the proposed GcsFCM algorithm is more effective and robust to noise and IIH than the FCM, sFCM and csFCM algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.