• Title/Summary/Keyword: FCM알고리즘

Search Result 176, Processing Time 0.038 seconds

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

Real Time Recognition of Finger-Language Using Color Information and Fuzzy Clustering Algorithm (색상 정보와 퍼지 클러스터링 알고리즘을 이용한 실시간 수화 인식)

  • Kang, Hyo-Joo;Lee, Dong-Gyun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.419-423
    • /
    • 2008
  • 사람의 손동작은 오랫동안 하나의 언어역할을 하는 통신 수단으로 사용되어 왔다. 이러한 손동작 중에서 가장 체계를 갖춘 수화는 청각장애인이 일반인과 일상 대화를 할 수 있도록 도와주는 주요한 통신 수단이다. 하지만 건청인들의 대부분이 습득하고 있지 않아 청각장애인들과 의사소통이 거의 불가능 한 것이 현실이다. 따라서 본 논문에서는 건청인과 청각장애인들 간의 의사소통을 원활하게 하기 위해 색상 정보와 퍼지 클러스터링 알고리즘을 이용한 실시간 수화 인식 방법을 제안한다. 제안된 방법은 화상 카메라를 통해 얻어진 실시간 영상에서 YCbCr 컬러 공간에서 색차 정보에 해당하는 Cb, Cr 정보를 각각 추출한 후, 이진화한 영상과 원본 영상에서 마스크를 통한 에지를 추출한 이진화 영상에 대해 논리연산을 통해 두 손의 위치와 외곽을 추출한다. 추출된 각 정보를 조합하여 8 방향 윤곽선 추적 알고리즘을 적용하여 객체의 위치를 추적한다. 그리고 추적한 객체의 영역에 대해 형태학적 정보를 이용하여 잡음을 제거한 후, 최종적으로 두 손의 영역을 추출한다. 추출된 손의 영역은 퍼지 클러스터링 기법 중의 FCM 알고리즘을 적용하여 수화의 특징들을 분류하고 인식한다. 제안된 방법의 성능을 평가하기 위해 화상카메라를 통해 얻어진 실시간 영상을 대상으로 실험한 결과, 제안된 방법이 두 손 영역의 추출에 효과적이고 수화 인식에 있어서 가능성을 확인하였다.

  • PDF

Effective Fuzzy Clustering Algorithm Using Evolution Program (진화 프로그램을 이용한 효율적인 퍼지 클러스터링 알고리즘)

  • 정창호;박주영;박대희
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.139-142
    • /
    • 1997
  • 본 논문에서는 기존 FCM(Fuzzy C-Means) 타입 클러스터링 알고리즘의 선은 향상을 위한 설계 방법을 제시한다. 우선 클러스터의 응집성(compactness)과 분리성(separation)을 동시에 고려한 성능 지수를 정의하고, 이를 진화 프로그램을 통하여 최적화 한다. 또한 실험을 통하여 기존 연구들과의 비교 및 제안된 방법론의 유효성을 보인다.

  • PDF

Fault Current Discrimination of Power Line using FCM allowing self-organization (FCM에 기반한 자가생성 지도학습알고리즘을 이용한 전력선의 고장전류 판별)

  • Jeong, Jong-Won;Won, Tae-Hyun;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.368-369
    • /
    • 2011
  • This article suggests an online-based remote fault current mode discrimination method in order to identify the causes of the power line faults with various causes. For that, it refers to existing cause identification methods and categorizes modes by fault causes based on statistical techniques beforehand and performs the pretreatment process of fault currents by each cause acquired from the fault recorder into a topological plane in order to extract the characteristics of fault currents by each cause. After that, for the fault mode categorization, it discriminates modes by each cause using data by each cause as leaning data through utilizing RBF network based on FCM allowing self-organization in deciding the middle layer. And then it tests the validity of the suggested method as applying it to the data of the actual fault currents acquired from the fault recorder in the electric power transmission center.

  • PDF

Design of Sewage Treatment Process Simulator with the Aid of IG-based RBFNNs (정보입자기반 RBFNNs에 의한 하수처리공정 시뮬레이터의 설계)

  • Lee, Seung-Joo;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1958-1959
    • /
    • 2011
  • RBFNNs(Radial Basis Function Neural Networks) 모델의 경우 Min-Max, HCM(Hard C-means)클러스터링 그리고 FCM(Fuzzy C-means)클러스터링 중 한가지를 통해 데이터 입자는 로드 규칙을 생성한 후 퍼지 공간을 분할 및 가우시안 함수의 정점을 정의한다. 본 논문은 기존의 방법과는 다르게 Min-Max와 FCM클러스터링을 혼합하여 로드의 규칙을 생성한 후 퍼지 공간을 분할 및 가우시안 함수의 정정을 정의하는 방법으로 사용하고자 한다. PSO최적화 알고리즘을 이용하여 같은조건에서 최적화한 기존의 방법으로 모델링된 RBFNNs와 Min-Max와 FCM 클러스터링을 혼합하여 사용한 방법의 비교를 통하여 어떤 모델의 성능이 더욱 좋은지 비교하고자 한다.

  • PDF

Detection and Disgnosis of induction motor using Conditional FCM and Radial Basis Function Network (조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출)

  • 김승석;김형배;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.321-324
    • /
    • 2004
  • 본 논문에서는 유도전동기 고장진단을 위하여 계층적인 하이브리드 뉴럴네트웍을 제안하였다. 시스템의 입출력 데이터에 근거하여 패턴을 분류하고자 할 때 직접적인 분류가 어렵거나 성능이 좋지 않을 경우 적절한 방법을 통하여 변환을 하거나 또는 패턴 분류기의 특성에 맞도록 변환하여 패턴 분류 성능을 향상하는 등 단계별 변환 및 분류 기법을 이용하였다. 제안된 방법에서는 실험에 의해 측정된 전류값을 주기별로 주성분분석(PCA) 기법을 이용하여 입력차원을 축소한 후 이를 조건부 FCM으로 방사기저함수의 초기치를 최적화하여 학습을 하였다. 이는 주성분분석이 가지는 특성을 이용하여 데이터의 특징을 나누었으며 이를 뉴럴네트웍의 학습 기능을 이용하여 모델의 최종 성능을 개선하는 것이다. 각각의 알고리즘이 가지는 특징을 활용하면서도 단점을 계층적으로 보안하여 유도 전동기 고장 진단 성능을 개선하였다. 이를 실제 계측된 유도전동기 데이터를 이용하여 제안된 방법의 유용성을 보이고자 한다.

  • PDF

A Study on the Design of Binary Decision Tree using FCM algorithm (FCM 알고리즘을 이용한 이진 결정 트리의 구성에 관한 연구)

  • 정순원;박중조;김경민;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1536-1544
    • /
    • 1995
  • We propose a design scheme of a binary decision tree and apply it to the tire tread pattern recognition problem. In this scheme, a binary decision tree is constructed by using fuzzy C-means( FCM ) algorithm. All the available features are used while clustering. At each node, the best feature or feature subset among these available features is selected based on proposed similarity measure. The decision tree can be used for the classification of unknown patterns. The proposed design scheme is applied to the tire tread pattern recognition problem. The design procedure including feature extraction is described. Experimental results are given to show the usefulness of this scheme.

  • PDF

Faults Current Discrimination Using FCM (FCM을 이용한 고장전류의 판별에 관한 연구)

  • Jeong, Jong-Won;Ji, Suk-Joon;Lee, Joon-Tark;Kim, Kwang-Back
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.458-460
    • /
    • 2007
  • RBF 네트워크의 중간층은 클러스터링 하는 층으로 주어진 자료 집합을 유사한 클러스터들로 분류하는 것이다. 여기서 유사하다는 것은 입력 데이터들에 대한 특징 벡터 공간사이에서 한 클러스터내의 벡터들 간에 거리를 측정하여 정해진 반경 내에 존재하면 같은 클러스터로 분류하고 정해진 반경 내에 존재하지 않으면 다른 클러스터로 분류한다. 그러나 정해진 반경 내에서 클러스터링 하는 것은 잘못된 클러스터를 선택하는 단점을 가지게 된다. 그러므로 중간층을 결정하는 것은 RBF 네트워크의 전반적인 효율성에 큰 영향을 준다. 따라서 본 논문에서는 효율적으로 중간층을 결정하기 위한 방법으로 퍼지 C-Means 클러스터링 알고리즘을 이용하고자 하였다. 그리하여 본 논문에서는 고장 전류의 특성을 해석하여 그 원인을 판단, 분류하기 위하여 전력계통의 고장 기록 장치로부터 얻어지는 선로의 전류 데이터를 FCM을 이용 분류하여 다양한 고장 모드를 판별할 수 있었다.

  • PDF

A Clustering Algorithm using the Genetic Algorithm (진화알고리즘을 이용한 클러스터링 알고리즘)

  • 류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.313-315
    • /
    • 2000
  • 클러스터링에 있어서 K-means와 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최소 해에 수렴될 문제와 사전에 클러스터 개수를 결정해야 하는 문제점을 가지고 있다. 본 논문에서는 병렬 탐색을 통해 최적 해를 찾는 진화 알고리즘을 사용하여 지역적 최소 해에 수렴되는 문제점을 개선하였으며, 클러스터의 특성을 표준편차 벡터를 계산하여 중심으로부터 포함된 데이터가 얼마나 분포되어 있는지 알 수 있는 분산도와 임의의 데이터와 모든 중심들간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터간의 간격을 알 수 있는 분리도를 정의함으로써 자동으로 클러스터 개수를 결정할 수 있게 하였다. 실험데이터와 가우시안 분포에 의해 생성된 다차원 실험데이터를 사용하여 제안한 알고리즘이 이러한 문제점들을 해결하고 있음을 보인다.

  • PDF

The Classification of Fatty Liver by Ultrasound Imaging using Computerizing Method (컴퓨터 기법을 이용한 초음파 영상에서의 지방간 분류)

  • Jang, Hyun-Woo;Kim, Kwang-Beak;Kim, Chang Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2206-2212
    • /
    • 2013
  • We propose a method for the classification of fatty liver by ultrasound imaging using Fuzzy Contrast Enhancement Technique and FCM. ROI images are extracted after removal of information data except ultrasound image of the liver and the kidney then image contrast is improved by Fuzzy Contrast Enhancement Algorithm. The images applied Fuzzy Contrast Enhancement Technique is applied average binarization then ROI images of liver and kidney parenchyma are extracted using Blob algorithm. Representative brightness is extracted in the liver and kidney images using the most frequent brightness level after classification of 10 brightness levels. We applied this method to ultrasound images and a radiologist confirmed the accuracy of diagnosis for fatty liver. This method would be a model for automatic method in the diagnosis of fatty liver.