Design of Sewage Treatment Process Simulator with the Aid of IG-based RBFNNs

정보입자기반 RBFNNs에 의한 하수처리공정 시뮬레이터의 설계

  • Lee, Seung-Joo (Department of Electrical Engineering, The University of Suwon) ;
  • Oh, Sung-Kwun (Department of Electrical Engineering, The University of Suwon)
  • Published : 2011.07.20

Abstract

RBFNNs(Radial Basis Function Neural Networks) 모델의 경우 Min-Max, HCM(Hard C-means)클러스터링 그리고 FCM(Fuzzy C-means)클러스터링 중 한가지를 통해 데이터 입자는 로드 규칙을 생성한 후 퍼지 공간을 분할 및 가우시안 함수의 정점을 정의한다. 본 논문은 기존의 방법과는 다르게 Min-Max와 FCM클러스터링을 혼합하여 로드의 규칙을 생성한 후 퍼지 공간을 분할 및 가우시안 함수의 정정을 정의하는 방법으로 사용하고자 한다. PSO최적화 알고리즘을 이용하여 같은조건에서 최적화한 기존의 방법으로 모델링된 RBFNNs와 Min-Max와 FCM 클러스터링을 혼합하여 사용한 방법의 비교를 통하여 어떤 모델의 성능이 더욱 좋은지 비교하고자 한다.

Keywords