• Title/Summary/Keyword: FCL(Fault Current Limiter)

Search Result 76, Processing Time 0.022 seconds

Optimal Design of HTS Fault Current Limiter using Monte Carlo Simulation Method (Monte Carlo Simulation을 이용한 초전도 한류기 EMTDC 모델의 파라메터 최적 설계)

  • 윤재영;김종율;이승렬
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.135-139
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is large fault current which exceeds the SCC(Short Circuit Capacity) of circuit breaker, As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. However, the parameters of HTS-FCL should be designed optimally to have a best performance. Under this background, this paper presents the optimal design method of parameters for resistive type HTS-FCL using stochastic analysis technique.

Preliminary Study of HTS-FCL Application in Distribution System (초전도 한류기의 배전계통 적용 기본검토)

  • Choi, Heung-Kwan;Yoon, Jae-Young;Kim, Jong-Yeul;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.421-423
    • /
    • 2003
  • To prevent fault effect in supply of electric power distribution system and plan stable operation of electric power system, must control magnitude of fault current. Although there are various kinds of method to solvethis, approached from super conductivity Fault Current Limiter application viewpoint among them. High Temperature Superconductor-Fault Current Limiter (HTS-FCL) development is progressing according to HTS technology development, and system application is tried. For actual system application of such super conductivity FCL, so that can reflect special quality of actuality supply of electric power distribution system just as it is in this treatise supply of electric power system by two modelling do. Also, by simulation of HTS-FCL action and protection coordination with another equipment appliances, verified the effectiveness in supply of electric power system applying itself super conductivity FCL EMTDC dynamic characteristic model that is develope.

  • PDF

The Simulation on the Design and the Characteristic of Shielded Inductive $High-T_c$ Superconducting Fault Current Limiter (차폐유도형 고온초전도 전류제한기의 설계 및 특성시뮬레이션)

  • Im, Seong-Hun;Choe, Myeong-Ho;Lee, Hyeon-Su;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.173-178
    • /
    • 1999
  • In this paper, the characteristics of the shielded inductive superconducting fault current limiter(FCL) were simulated and analyzed. After determining parameters fo design for superconducting tube, iron core and primary coil, simple power system composed of shielded inductive FCL was simulated by the numerical analysis. The currents flowing under the fault condition could be limited below 50 A successfully. It was suggested that as the important factors of operational characteristics, the turns of primary coil and size of iron core play a major role for whether the shielded inductive SCFCL operated as inductive type or resistive type FCL.

  • PDF

Simulation of the Three-Phase Modified Bridge Tyne Fault Current Limiter for Simplified Power System (삼상 변형 브리지 형태 한류기의 단순계통적용 시뮬레이션)

  • 이응로;이승제;이찬주;김태중;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.68-71
    • /
    • 2001
  • This paper deals with the operational characteristics of the three-phase modified bridge type fault current limiter(FCL) for 3.3kV/200A power system. This is a preliminary step to develop the FCL's faculties for an application to high voltage transmission line. A three-phase modified bridge type FCL consists of transformers, diodes, and a high-Tc superconducting coil. As the results of simulations, when the FCL of 1.5H inductance was installed in the power system. the fault current was reduced to be about 90% of that without FCL.

  • PDF

Operational Characteristics of the FCL Using the Mechanical Contact in the Power System (기계적 접점을 이용한 FCL의 동작 특성)

  • Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.878-882
    • /
    • 2016
  • These days, SFCLs are being developed in order to limit fault current. However, the superconducting elements that limit the fault current have such problems as capacity increase and require auxiliary devices including cooling device. If devices that comprise the current power network can withstand fault current for at least one cycle, it is possible to limit the fault current with current limiting elements by bypassing it on the fault line. In this study, the fault current limiter was configured with current transformer, vacuum interrupter, and current limiting element. Through the experience, it was confirmed that the fault current was limited within one cycle. The superconducting element, as a current limiting element, limited the fault current by 80 % within one cycle from fault occurrence, and the passive element limited it more than 95 %. Also, through the comparison between resistance curve and power consumption curve, it was confirmed that the current limiting element using a passive element was more stable than the superconducting element that required capacity increase and other auxiliary devices. It was considered that the FCL proposed in this study could limit fault current stably within one cycle from fault occurrence by using the existing power technologies such as fault current detection and solenoid valve operating circuit.

Enhancement of Power System Transient Stability and Power Quality Using a Novel Solid-state Fault Current Limiter

  • Fereidouni, A.R.;Vahidi, B.;Mehr, T. Hoseini;Doiran, M. Garmroodi
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.474-483
    • /
    • 2011
  • Solid-state fault current limiters (SSFCL) in power systems are alternative devices to limit prospective short circuit currents from reaching lower levels. Fault current limiters (FCL) can be classified into two categories: R-type (resistive) FCLs and L-type (inductive) FCLs. L-type FCL uses an inductor to limit fault level and is more efficient in suppressing voltage drop during a fault. In contrast, R-type FCL is constructed with a resistance and is more effective in consuming the acceleration energy of generators during a fault. Both functions enhance the transient stability of the power system. In the present paper, a novel SSFCL is proposed to enhance power system transient stability and power quality. The proposed SSFCL uses both functions of an L-type and R-type FCL. SSFCL consists of four diodes, one self-turn-off IGCT, a current-limiting by-pass inductor (L), and a variable resistance parallel with an inductor for improvement of power system stability and prevention of over-voltage across SSFCL. The main advantages of the proposed SSFCL are the simplicity of its structure and control, low steady-state impedance, fast response, and the existence of R-type and Ltype impedances during the fault, all of which improve power system stability and power quality. Simulations are accomplished in PSCAD/EMTDC.

Parameter Design Using Probabilistic Methodology For Resistive HTS- FCL

  • Yoon, Jae-Young;Kim, Jong-Yul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.26-29
    • /
    • 2003
  • Nowadays, one of the serious problems in KEPCO system is much higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. As the superconductivity technology has developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. But the parameters of HTS-FCL should be designed optimally to have the best performance. Under this background, this paper presents the optimal design method of parameters for resistive type HTS-FCL using Monte Carlo technique.

Development of HTS-FCL Location Selection Program in Power System (초전도한류기의 최적 적용위치 선정 프로그램 개발)

  • 최흥관;윤재영;김종율;이승렬;이병준
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.205-208
    • /
    • 2003
  • Maximum short circuit current of modern power system is becoming so large that the current should transmission capability. Although there are various kinds of method to solve this, approached from super conductivity Fault Current Limiter application viewpoint among them. High Temperature Superconductor-Fault Current Limiter (HTS-FCL) development is progressing according to HTS technology development, and system application is tried. For actual system application of such super conductivity FCL, an efficient method to find FCL locations suitable for reduction of short circuit currents of more than one fault location is developed.

  • PDF

Development of HTS-FCL Location Selection Program in Power System (초전도한류기의 계통적용점 선정 프로그램 개발)

  • Choi, Heung-Kwan;Yoon, Jae-Young;Kim, Jong-Yeul;Lee, Seung-Ryul;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.321-323
    • /
    • 2003
  • Maximum short circuit current of modern power system is becoming so large that the current should transmission capability. Although there are various kinds of method to solve this, approached from super conductivity Fault Current Limiter application viewpoint among them. High Temperature Superconductor-Fault Current Limiter(HTS-FCL) development is progressing according to HTS technology development, and system application is tried. For actual system application of such super conductivity FCL, an efficient method to find FCL locations suitable for reduction of short circuit currents of more than one fault location is developed.

  • PDF

The design and analysis of Operational characteristic of Shielded Inductive Fault Current Limiter using high-$T_c$ Superconducting (고온초전도체를 이용한 차폐유도형 전류제한기의 설계 및 동작 특성해석)

  • Song, Jae-Joo;Lee, Jae;Lim, Sung-Hun;Kang, Hyeong-Gon;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.339-342
    • /
    • 2001
  • In this paper, the characteristics of the shielded inductive superconducting fault current limiter(FCL) were simulated and analyzed to search for the parameter to determine FCL operation, Fault current limiting operation can be executed as resistive or inductive type, which is determined by iron-core radius and the number of the primary coil turns. It was considered through this paper that the operation of each was compared and examined about the merit of each mode.

  • PDF