• Title/Summary/Keyword: FCG

Search Result 32, Processing Time 0.024 seconds

Production Procedures and Economics of the American Ginseng (미국 화기삼의 종류별 생산방법과 경제성분석)

  • Lee, Dong-Phil
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.172-180
    • /
    • 2006
  • The purpose of this study is classifying types of American ginseng and estimating their production cost and revenue by the types. Usually, the American ginseng can be classified as 4 different types; wild ginseng(WG), wild simulated ginseng(WSG), woods grown ginseng(WGG), and field cultivated ginseng(FCG). This paper estimates costs and benefits for FCG, WGG, and WSG per acre. The WGG & WSG are produced under the tree at mountain while the FCG is produced at large scale farm with machinery. Annual profit for the FCG is $2,222 while that of the WGG and the WSG are $2,759 and $3,799 per acre. Although quantity produced per acre for the WGG and WSG(600lbs and 160lbs) are much smaller than that of the FCG(3,000lbs), prices per pound for the WGG and WSG($125, 375$) are higher than that of the FCG($24). In addition, production costs for the WGG and WSG are lower than that of the FCG because of the costs for seeds, shadow facility, and chemicals are different by the types of production.

Corrosion fatigue crack growth behavior of 316LN stainless steel in high-temperature pressurized water

  • Zhang, Ziyu;Tan, Jibo;Wu, Xinqiang;Han, En-Hou;Ke, Wei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2977-2981
    • /
    • 2021
  • Corrosion fatigue crack growth (FCG) behavior of 316LN stainless steel was investigated in high-temperature pressurized water at different temperatures, load ratios (R = Kmax/Kmin) and rise times (tR). The environmental assisted effect on FCG rate was observed when both the R and tR exceeded their critical values. The FCG rate showed a linear relation with stress intensity factor range (ΔK) in double logarithmic coordinate. The environmental assisted effect on FCG rate depended on the ΔK and quantitative relations were proposed. Possible mechanisms of environmental assisted FCG rate under different testing conditions are also discussed.

A Study on the Fatigue Crack Growth Behavior of A Ti-24Al-11Nb Alloy (Ti-24Al-11Nb 합금의 피로균열성장거동에 관한 연구)

  • Bae, Gyu-Sik;Lee, Mun-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.313-319
    • /
    • 1992
  • The mechanisms of fatigue crack growth (FCG) in a Ti$_3$Al-based (${\alpha}_2$) alloy, Ti-24Al-11Nb (a/o) with acicular microstructure were studied with particular attention focused on the fatigue crack path through the microstructure and on the effects of specimen orientation and crack closure. The results showed that the fatigue cracks of Ti-24Al-11Nb alloy grew much faster than conventional titanium alloys, with little difference in FCG rates for TL and TS orientations. The fatigue crack paths revealed crystallographic transgranular fracture with frequent serrations and branching. This is in agreement with the known effects of slip planarity and microstructure on the FCG behavior. The load-displacement hysteresis loops showed that the crack closure influenced the FCG behavior.

  • PDF

A Study on the Fatigue Crack Growth Behavior of 9% Ni Steels (9% Ni강의 피로균열진전거동에 관한 연구)

  • Shim, Kyue-Taek;Kim, Jae-Hoon;Lee, Kwan-Hee;Ahn, Byung-Wook;Kim, Young-Kyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.167-172
    • /
    • 2008
  • This study is to evaluate the fatigue crack growth characteristics for base metals and welded metal of 9% Ni steels. Since this material has very excellent fracture toughness at low temperature, it has been widely used for inner walls of LNG storage tank. These materials to compare fatigue crack growth (FCG) behaviour are treated with heat by the method of quenching and tempering (QT), and quenching, lamellarizing and tempering (QLT). FCG tests using compact temsion (CT) specimen under stress ratio R=0.1, 0.5, and constant load are carried out. K-increasing tests are conducted by the standard test method described in ASTM E 647. To investigate the effect of welded metal on the crack growth rate, the locations of notch tip were chosen at the center of welded metal and heat affected zone (HAZ). Form the results, FCG rate has almost same tendency according to stress ratio, base and welded metal, the locations of welded metal. FCG rate of welded metal is somewhat faster than base metal. Also scanning electron microscope (SEM) is used to observe the striation of the fractured surface after fatigue crack tests.

  • PDF

Diversity of Endophytic Fungi Isolated from Korean Ginseng Leaves

  • Eo, Ju-Kyeong;Choi, Min-Seok;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.147-151
    • /
    • 2014
  • We investigated the diversity of the foliar endophytes of Korean ginseng. Endophytic fungi were isolated from healthy leaves of mountain-cultivated ginseng (MCG) and field-cultivated ginseng (FCG) at 4 sites in Chungbuk Province. A total of 24 species of fungal endophytes were identified using molecular approaches. Additionally, the diversity of these endophytic fungi was compared between MCG and FCG. The major isolated endophytes were Edenia gomezpompae and Gibberella moniliformis in the MCG and FCG samples, respectively. The results suggest that ginseng endophytes have different community structures in different environments, and this understanding may prove useful in ginseng cultivation.

Comparison of Crack Growth Test Results at Elevated Temperature and Design Code Material Properties for Grade 91 Steel (Grade 91 강의 고온 균열진전 실험 결과와 설계 물성치의 비교)

  • Lee, Hyeong-Yeon;Kim, Woo-Gon;Kim, Nak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.27-35
    • /
    • 2015
  • The material properties of crack growth models at an elevated temperature were derived from the results of numerous crack growth tests for Mod.9Cr-1Mo (ASME Grade 91) steel specimens under fatigue loading and creep loading at an elevated temperature. These crack growth models were needed for defect assessment under creep-fatigue loading. The mathematical crack growth rate models for fatigue crack growth (FCG) and creep crack growth (CCG) were determined based on the test results, and the models were compared with those of the French design code RCC-MRx to investigate the conservatism of the code. The French design code RCC-MRx provides an FCG model and a CCG model for Grade 91 steel in Section III Tome 6. It was shown that the FCG model of RCC-MRx is conservative, while the CCG model is non-conservative compared with the present test data. Thus, it was shown that further validation of the property was required. Mechanical strength tests and creep tests were also conducted, and the test results were compared with those of RCC-MRx.

Issues When Estimating Fatigue Life of Structures

  • Lee, Ouk-Sub;Chen, Zhi-wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.43-47
    • /
    • 2000
  • When estimating fatigue crack growth (FCG) life of structures, the use of crack growth models and knowledge of the values of their corresponding parameters are of vital importance. Inconsistency in using models with appropriate parameters can lead to enormous errors in FCG life prediction. In this paper examples are analyzed and compared with test results to show the possible problems, Consistency checks are necessary for avoiding some pitfalls, and also necessary for verifying the correct performance and accuracy of the used computer program.

  • PDF

A Study on Transcriptome Analysis Using de novo RNA-sequencing to Compare Ginseng Roots Cultivated in Different Environments

  • Yang, Byung Wook
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.5-5
    • /
    • 2018
  • Ginseng (Panax ginseng C.A. Meyer), one of the most widely used medicinal plants in traditional oriental medicine, is used for the treatment of various diseases. It has been classified according to its cultivation environment, such as field cultivated ginseng (FCG) and mountain cultivated ginseng (MCG). However, little is known about differences in gene expression in ginseng roots between field cultivated and mountain cultivated ginseng. In order to investigate the whole transcriptome landscape of ginseng, we employed High-Throughput sequencing technologies using the Illumina HiSeqTM2500 system, and generated a large amount of sequenced transcriptome from ginseng roots. Approximately 77 million and 87 million high-quality reads were produced in the FCG and MCG roots transcriptome analyses, respectively, and we obtained 256,032 assembled unigenes with an average length of 1,171 bp by de novo assembly methods. Functional annotations of the unigenes were performed using sequence similarity comparisons against the following databases: the non-redundant nucleotide database, the InterPro domains database, the Gene Ontology Consortium database, and the Kyoto Encyclopedia of Genes and Genomes pathway database. A total of 4,207 unigenes were assigned to specific metabolic pathways, and all of the known enzymes involved in starch and sucrose metabolism pathways were also identified in the KEGG library. This study indicated that alpha-glucan phosphorylase 1, putative pectinesterase/pectinesterase inhibitor 17, beta-amylase, and alpha-glucan phosphorylase isozyme H might be important factors involved in starch and sucrose metabolism between FCG and MCG in different environments.

  • PDF

A Study on the Countermeasure Algorithm for Power System Disturbance in Large Scale Fuel Cell Generation System (대용량 연료전지발전시스템의 계통외란방지알고리즘에 관한 연구)

  • Kim, Gi-Young;Oh, Yong-Taek;Kim, Byung-Ki;Kang, Min-Kwan;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5550-5558
    • /
    • 2015
  • Recently, fuel cell with high energy efficiency and low CO2 emission is energetically interconnected with power system. Especially, FCGS(Fuel Cell Generation System) which usually operates at high temperature, is being developed and installed in the form of large scale system. However, it is reported that power system disturbances related to surge, harmonic and EMI have caused several problems such as malfunction of protection device and damage of control device in the large scale FCGS. In order to solve these problems, this paper presents a modeling of operation characteristics of FCGS by PSCAD/EMTDC, ETAP, P-SIM software. And also, this paper proposes countermeasure algorithms to prevent power system disturbances. From the simulation results, it is confirmed that the proposed algorithm is useful method for the stable operation of large scale FCGS.

A Fuel Cell Generation System with a Fuel Cell Simulator

  • Lee Tae-Won;Jang Su-Jin;Jang Han-Keun;Won Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.55-61
    • /
    • 2005
  • A fuel cell (FC) system includes a fuel processor plus subsystems to manage air, water, and thermal energy, and electric power. The overall system is high-priced and needs peripheral devices. In this paper, a FC simulator is designed and constructed with the electrical characteristics of a fuel cell generation (FCG) system, using uses a simple buck converter to overcome these disadvantages. The characteristic voltage and current (V-I) curve for the FC simulator is controlled by a simplified linear function. In addition, to verify FCG system performance and operation, a full-bridge DC/DC converter and a single-phase DC/AC inverter were designed and constructed for FC applications. Close agreement between the simulation and experimental results confirms the validity and usefulness of the proposed FC simulator.