• Title/Summary/Keyword: FARMLAND

Search Result 544, Processing Time 0.028 seconds

Effect of Freshwater Discharge on the Seawater Quality (Nutrients, Organic Materials and Trace Metals) in Cheonsu Bay (여름철 천수만 해수에서 담수 대량 방류에 따른 영양염, 유기물 및 미량금속의 변화)

  • LEE, JI-YOON;CHOI, MAN-SIK;SONG, YUNHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.519-534
    • /
    • 2019
  • When the fresh water from the artificial lakes (Ganwolho and Bunamho) were discharged to Cheonsu Bay in summer to prevent the flood over the reclaimed farmland near the lakes, the impact on water qualities (nutrients, organic matters, trace metals) within the bay was investigated through four surveys (June, July, August and October, 2011). Dissolved inorganic nitrogen (DIN) increased about as much as 3-4 times over the whole water column when the freshwater was discharged. And the main species composition of DIN changed from ammonia to nitrate. Dissolved inorganic phosphorus (DIP) decreased as much as 2 times in surface waters, but increased as much as 1.5 times in deep waters, and also silicate concentrations increased as much as 3-4 times in deep waters of the inner bay. The N/P ratios in Chunsu bay seawaters were much higher (2 to 7 times) than the Redfield ratio when the freshwaters were discharged, which indicated the phosphorus limiting in the phytoplankton growth. Dissolved organic carbon (DOC) and nitrogen (DON) increased as much as about 2 times. In addition, particulate organic matters (POC, PON, POP, Bio-Si) increased as much as above 2 times in the surface waters of the inner bay. Trace metals (Fe, Mn, Co, Ni, Cu) increased in the surface waters of the inner bay, but dissolved Cd concentrations decreased as much as 2 times. Therefore, when the contaminated fresh waters from the artificial lakes were discharged into the bay, nutrients, organic matters and trace metals generally increased compared to normal period. Since the phytoplankton bloom occurred in the surface waters of the inner bay, dissolved oxygens at the surface waters were oversaturated and hence hypoxic in the deep waters. Highly enriched nutrients concentrations were found in deep waters of the inner bay, which was accompanied with the hypoxic condition. Finally, the water quality in the inner bay of the Chunsu bay was deteriorated from less than grade 3 in normal periods to grade 5 when the freshwaters from the artificial lakes were discharged in summer.

Best Management Practices Reducing Soil Loss in the Saprolite Piled Upland in Hongcheon Highland (고령지 석비레 성토 밭의 토양유실 저감을 위한 최적영농관리방안)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Lee, Jung-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.119-126
    • /
    • 2005
  • Soil erosion at Jawoon-Ri in Hongcheon highland is one of serious problems since saprolite piling on farmland has been typically practiced at 2-3 year's intervals. The objective of the case study was to survey management practices such as tillage, application of saprolite, and cultivating crops and to propose best management practices (BMP) to reduce soil loss in Jawoon-Ri, Hongcheon-Gun. Jawoon-Ri is located in the upper stream of Naerinchun. Upland areas of Jawoon 2 and 4Ri were 206.9 and 142.3 hectare, respectively. Estimation of soil loss in this study was based on USLE (Universal soil loss equation). Annual averaged soil losses were 15.6 MT per hectare in Jawoon-2Ri and 9.0 MT per hectare in Jawoon-4Ri, respectively. This case study tried to find methods to reduce soil erosion below tolerant soil loss level which is $11MT\;ha^{-1}\;yr^{-1}$. Estimated soil losses in more than 40% of uplands in Jawoon-2Ri and 4Ri were higher than tolerant soil loss level. Especially, edge of uplands undergone excessive soil erosion by concentrated runoff water. Therefore consolidation of upland edge was included as one of the proposed Best management practices BMP). The proposed BMP in this area were buffer strips, contour and mulching, diversion drain channel, grassed water-way, detour watet-way and cover crops and so on. Amounts for BMP requirements were 7,680 m for buffer strips, 123 ha (35%) for contour and mulching, 201 ha (57%) for diversion drain channel, 13,880 m for grassed water-way, 3,860 m for detour drainage, 8,365 m for sloping side consolidation and 3,492 ha for cover crops, respectively. Application of BMP are urgently needed in uplands which is direct conjunction with stream.

Prediction of Seasonal Nitrate Concentration in Springs on the Southern Slope of Jeju Island using Multiple Linear Regression of Geographic Spatial Data (지리 공간 자료의 다중회귀분석을 이용한 제주도 남측사면 용천수의 시기별 질산성 질소 농도 예측)

  • Jung, Youn-Young;Koh, Dong-Chan;Kang, Bong-Rae;Ko, Kyung-Suk;Yu, Yong-Jae
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.135-152
    • /
    • 2011
  • Nitrate concentrations in springs at the southern slope of Jeju Island were predicted using multiple linear regression (MLR) of spatial variables including hydrogeological parameters and land use characteristics. Springs showed wide range of nitrate concentrations from <0.02 to 86 mg/L with a mean of 20 mg/L. Spatial variables were generated for the circular buffer when the optimal buffer radius was assigned as 400 m. Selected regression models were tested using the p values and Durbin-Watson statistics. Explanatory variables were selected using the adjusted $R^2$, Cp (total squared error) and AIC (Akaike's Information Criterion), and significance. In addition, mutual linear relations between variables were also considered. Small portion of springs, usually <10% of total samples, were identified as outliers indicating limitations of MLR using circular buffers. Adjusted $R^2$ of the proposed models was improved from 0.75 to 0.87 when outliers were eliminated. In particular, the areal proportion of natural area had the greatest influence on the nitrate concentrations in springs. Among anthropogenic land uses, the influence of nitrate contamination is diminishing in the following order of orchard, residential area, and dry farmland. It is apparent quality of springs in the study area is likely to be controlled by land uses instead of hydrogeological parameters. Most of all, it is worth highlighting that the contamination susceptibility of springs is highly sensitive to nearby land uses, in particular, orchard.

Leisure Riding Activation Plan of the Jeju Horse designated industrial zones (말 산업특구 지정에 따른 제주도 레저승마 활성화 방안)

  • Choi, Cheol-Young
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.355-363
    • /
    • 2017
  • Jeju-do was designated as the 'first horse industry special zone' in 2014, followed by additional designation of horse industry special zones in Icheon, Yongin of Gyeonggi-do and Gyeongsangbuk-do in 2015. As a result, horses have become no more synonymous with Jeju-do. Jeju-do may see its competitive edge becoming blunt, compared to other local governments, due to its environmental characteristics and accessibility. The Korean proverb, "Send people to Seoul and horses to Jeju-do", has become an old saying that does not match reality. However, Jeju-do, designated as the first horse industry special zone, is expected to play a leading role in cultivation of domestic horse industry and faces a challenge of creating exemplary cases of success in transforming horse industry into the senary (6th) industry. In addition, KRW 114.2 billion is planned to be invested into 35 projects covering 9 sectors, including supply of elite domestic racing horses, expansion of demand basis for horse-riding, cultivation of horse meat industry, etc., by 2017 as envisioned by the horse industry special zone promotion plan. Despite expansion of facilities and demand base for horse-riding, those at the sites point out that government support at policy level has not come home to their hearts and criticism has been mounting that project efficiency remains low. Factors hindering the growth of horse industry, which have come to the fore, include inadequate supply of horse-riding facilities, limitation to expansion of demand for horse-riding, etc., due to excessive regulation. Advancement of horse industry requires wide-ranging deregulation on investment related to horse industry, including horse breeding and horse-riding facility installation, etc. Regulation which is deemed to be the biggest stumbling block to advancement of horse industry is related to the regulation requiring formation of farmland at horse-riding facilities in farming and fishery villages. Along with improvement in such regulations, horse-riding facilities without license should be legalized to promote qualitative growth of horse-riding industry. Moreover, efforts should be made to develop and deploy instructors with horse-riding license in order to develop horse-riding into a full-fledged leisure beyond simple experience auxiliary to tourism, thus ensuring that people can enjoy leisure style horse-riding regularly in safe and healthy manners. It would be necessary to add fresh momentum into efforts to turn Jeju-do into the hub of well-being leisure horse-riding by pooling our wisdom.

Yield of Green Manure and Nitrogen of Cornflower (Centaurea cyanus L.) in Different Upland Soil Textures (토성별 수레국화 (Centaurea cyanus L.)의 녹비수량 및 질소생산량)

  • Cho, Hyeoun-Suk;Seong, Ki-Yeung;Park, Tae-Seon;Seo, Myung-Chul;Jeon, Weon-Tai;Kang, Hang-Won;Lee, Hye-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.664-670
    • /
    • 2012
  • Experiments were conducted to find out the landscape effects and green manure production at the same time in farmland. Cornflower was grown in different soil texture with sand, sandy loam, loam, clay loam, and was sowing with autumn and spring respectively. The overwintering rate of cornflower was at 58.7% in average, and the treatment at sand soil showed 62.1% that was highest among other soils, which cornflower is possible to winter landscape crop. After flowering of cornflower, the contents of total nitrogen (T-N) and total carbon (T-C) in plant were 15.0 and $409.2g\;kg^{-1}$, respectively, and the carbon-nitrogen ratio (C/N) was 28.6. The yield of cornflower biomass, which will be returned to soil as green manure, recorded $1,210{\sim}3,920kg\;ha^{-1}$ at the spring seeding higher than the autumn seeding as $1,540{\sim}3,170kg\;ha^{-1}$, and the biomass treated by soil texture were showed that the treatments at the clay loam had been the largest yields both spring and autumn seeding among at other treatment of soil. The heights of cornflower regardless of soil treatments were 52.8 to 73.6 cm at the autumn seeding and 35.5 to 79.2 cm at the spring seeding although it was more significant variation at the soil textures than the seeding periods. The flowering periods of cornflower ranged from $17^{th}$ to $20^{th}$ in May at the autumn seeding and from $19^{th}$ to $20^{th}$ in June at the spring seeding, which was faster 30 days approximately at the autumn seeding than the spring seeding. In a view of the cornflower application as green manure after flowering, the autumn seeding, when considered to combine with following crops, was more suitable and various than the spring seeding, even though the yield at spring seeding was higher than one at autumn seeding.

Vegetation Structure Characteristics and Management Plan of Mulgeun Fish Shelter Forest in the Southern Coast (남해안 물건리 방조어부림의 식생구조 특성 및 관리방안)

  • Lee, Soo-Dong;Kim, Mi-Jeong;Kang, Hyun-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.1
    • /
    • pp.118-128
    • /
    • 2016
  • The purpose of this study is to present efficient methods of preserving and managing the fish shelter forest in Mulgun-ri on the southern coast of Korea on the basis of its humanistic, sociological and ecological characteristics. The study object is Korean natural monument No. 150, which is presumed to have been forested by descendants of Jeonju Lee Family who settled there, and village rituals are held every October to pray for the peace of the village. The forest is managed by Namhae-gun as a historical and cultural resource as well as its disaster-preventing, economic, and environmental and ecological functions. The linear form of the area is $23,962.6m^2$ and farmland(48.5%) and urbanization area(38.2%) are extensively located in its periphery area. Actual vegetation was sub-classified into three types of land according to use pressure and whether or not damage was done: land where its stratification was formed; land where it was restored, and the land where it was damaged. Plant communities were sub-classified into Aphananthe aspera community(I) and Zelkova serrata community(II) which had a low use pressure; Z. serrata-Chionanthus retusa-A. aspera community(III) and A. aspera-Z. serrata community(IV) which had a high use pressure; and Celtis sinensis-A. aspera community(V) whose underlayer was damaged by use. Fragmentation of the forest is under way and its inside vegetation growth is hampered due to the installation of traffic and resting facilities such as the through roads costal roads, wooden-deck walkways, parking lots, washstands, etc. As a restoration management plan for this, the following were required: an establishment of preferred restoration area; a selection of restoration vegetation species; and an appropriate restoration method. The damaged area($7,868.2m^2$) will have to be set up as the preferred restoration area; seedlings of restored vegetation species should be raised with dominant species within the forest(i.e., Z. serrata, A. aspera, C. sinensis, and C. retusa) as their 'mother trees' for the benefit of for the next-generation forest; and sub-tree and shrub layer should be complementarily planted with 5 and 115 trees(unit $100m^2$) respectively to facilitate the formation of a multi-layered vegetation structure. In addition, resting facilities scattered inside the forest should be demolished; and indiscriminate use of them should be controlled; management and monitoring should be carried out so that the area can be preserved and restored as a deciduous broad-leaved forest.

A Study on Temperature Change Profiles by Land Use and Land Cover Changes of Paddy Fields in Metropolitan Areas (대도시 외곽지역 논경작지의 토지이용 및 피복변화에 따른 온도 변화모형 연구)

  • Ki, Kyong-Seok;Lee, Kyong-Jae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.18-27
    • /
    • 2009
  • The purpose of this study is to understand the scale of temperature change following large-scale urban developments in paddy fields to present possible measures to preserve suburban area paddy fields and to lower the scale of temperature increase after developing paddy fields in urban areas. The study was conducted in Bupyeong and Bucheon of Incheon Metropolitan City. The satellite image($1989{\sim}2000$) before and after the development of old paddy fields were used to analyze the land surface temperature changes according to the land use types. Building coverage, green coverage, non-permeable pavement coverage, and floor area ratio(FAR) were selected as the factors that influence urban temperature changes and the temperature estimation model was constructed by using correlation and regression analyses. The before and after satellite images of Bupyeong and Bucheon were classified into forests, greens and plantations, paddy fields, unused lands, and urban areas. The results indicate that most of the paddy fields that existed in the center of Bupyeong and Bucheon were converted into unused lands which were undergoing construction to become new urban areas. The difference between the surface temperatures of May 17th, 1989 and May 7th, 2000 was analyzed to reveal that most land converted from paddy fields to unused lands or urban areas saw an increase in surface temperature. Han River was used as a comparison to analyze the average surface temperature changes($1989{\sim}2000$) in former paddy fields. The scale of temperature changes were: $+1.6697^{\circ}C$ in urban parks; $+2.5503^{\circ}C$ in residential zones; $+2.9479^{\circ}C$ on public lands, $+3.0385^{\circ}C$ in commercial zones, and $+3.1803^{\circ}C$ in educational zones. The correlation between building coverage, green coverage, non-permeable pavement coverage, or floor area ratio(FAR) and surface temperature increases was also analyzed. The green coverage to temperature increases, but building coverage, non-permeable pavement coverage, and floor area ratio(FAR) had no statistically significant temperature increases. The factors that influence urban temperature changes were set up as independent variables and the surface temperature changes as dependent variables to construct a surface temperature change model for the land use types of former paddy fields. As a result of regression analysis, green coverage was selected as the most significant independent variable. According to regression analysis, if farmland is converted into an urban area, a temperature increase of $+3.889^{\circ}C$ is anticipated with 0% green coverage. The temperature saw a decrease of $-0.43^{\circ}C$ with every 10% increase of green coverage.

Relation of Stream Shape Complexity to Land Use, Water Quality and Benthic Diatoms in the Seom River Watershed (섬강 수계에서 하천 형태복잡도와 토지이용, 수질 및 부착규조류 군집 분포와의 관계)

  • Min, Han-Na;Kim, Nan-Young;Kim, Mi-Kyung;Lee, Sang-Woo;Hwang, Kil-Soon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.110-122
    • /
    • 2012
  • This study examined the benthic diatom community distribution, land cover/use and water quality in relation to stream shape complexity (SSC) in the Seom River watershed. SSC showed a significant relation to the riparian land cover/use pattern and also water quality variables of the studied streams. Streams with high stream shape complexity (HSC) appeared to have a high proportion of forest and farmland, while streams having a low stream shape complexity (LSC) appeared to have high proportion of city. Streams with lower SSC showed higher nutrients concentration in the stream waters. Benthic diatom species composition and dominant species appeared to be similar regardless of SSC differences among the studied streams, while the variation of diatom density was manifested with SSC. The relative abundance of dominant benthic diatoms varied with SSC. Saprophilic diatoms were dominant in the streams of LSC, while saproxenic diatoms were dominant in the streams of HSC. During the evaluation of biological water quality using the benthic diatom indices, Trophic Diatom Index (TDI) and Diatom Assemblage Index to organic water pollution (DAIpo), the streams of LSC generally showed poorer water quality than those of MSC (Middle stream shape complexity) and HSC. In particular, BOD, TP, and $PO_4$-P showed significant relationships with DAIpo. In conclusion, shape complexity of streams in the Seom River watershed showed a close relation with benthic diatom distribution. This relation seemed to primarily be resulted from the effect of proximate factors, such as water quality, which might be affected by the land use types determining the degree of SSC.

Removal Efficiency of Water Pollutants and Malodor of Pig Slurry using Biofiltration System (여재순환장치를 이용한 돈분뇨 슬러리의 오염물질 및 악취제거 효율)

  • Choi, D.Y.;Kwag, J.H.;Jeong, K.H.;Park, K.H.;Huh, M.Y.;Kim, J.H.;Kang, H.S.;Jeon, K.H.;Park, C.H.;Jeong, J.W.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.217-224
    • /
    • 2009
  • The pig slurry is one of important fertilizer source for production of crops in recent years, but it has many controversial points of utilization such as offensive odor, lack of spread equipment and farmland possession, respectively. This study was carried out in order to remove water pollutants and malodor of pig slurry using biofiltration system. The biofiltration system consists of pig slurry separator, mixing shift and attached blade for sawdust or ricehull, air injection nozzle and outlet for pig slurry and sawdust or ricehull. The characteristics pH, $BOD_5$ (Biochemical Oxygen Demand), $COD_{Mn}$ (Chemical Oxygen Demand), SS (Suspended Solid), T-N (Total Nitrogen), T-P (Total Phosphorus) of the untreated pig slurry used in this study were 7.2, 34,450, 24,604, 71,000, 4,194, $1,631\;ml/{\ell}$, respectively. The $NH_3$ (Ammonia) and $H_2S$(Hydrogen Sulfide) concentration were 70.0, 9.6 ppm, respectively. The initial total microorganisms of pig slurry were $5.0{\times}10^3\;cfu/ml$, and Salmonella, Bacillus were $5.8{\times}10^2$, $1.1{\times}10^3\;cfu/ml$, respectively. The filtration system was very effective on removal of water pollutants of pig slurry. The removal efficiency of the offensive odor of ammonia and hydrogen sulfide in sawdust was higher than those of ricehull. The total microorganisms and bacillus of pig slurry are on the increase by sawdust and ricehull, but Salmonella showed a tendency to decrease in number after that time. Accordingly, the filtration system was very effective to produce a good quality pig slurry.

  • PDF

An Application of Satellite Image Analysis to Visualize the Effects of Urban Green Areas on Temperature (위성영상을 이용한 도시녹지의 기온저감 효과 분석)

  • Yoon, Min-Ho;Ahn, Tong-Mahn
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.46-53
    • /
    • 2009
  • Urbanization brings several changes to the natural environment. Its consequences can have a direct effect on climatic features, as in the Urban Heat Island Effect. One factor that directly affects the urban climate is the green area. In urban areas, vegetation is suppressed in order to accommodate manmade buildings and streets. In this paper we analyze the effect of green areas on the urban temperature in Seoul. The period selected for analysis was July 30th, 2007. The ground temperature was measured using Landsat TM satellite imagery. Land cover was calculated in terms of city area, water, bare soil, wet lands, grass lands, forest, and farmland. We extracted the surface temperature using the Linear Regression Model. Then, we did a regression analysis between air temperature at the Automatic Weather Station and surface temperature. Finally, we calculated the temperature decrease area and the population benefits from the green areas. Consequently, we determined that a green area with a radius of 500m will have a temperature reduction area of $67.33km^2$, in terms of urban area. This is 11.12% of Seoul's metropolitan area and 18.09% of the Seoul urban area. We can assume that about 1,892,000 people would be affected by this green area's temperature reduction. Also, we randomly chose 50 places to analysis a cross section of temperature reduction area. Temperature differences between the boundaries of green and urban areas are an average of $0.78^{\circ}C$. The highest temperature difference is $1.7^{\circ}C$, and the lowest temperature difference is $0.3^{\circ}C$. This study has demonstrated that we can understand how green areas truly affect air temperature.