• Title/Summary/Keyword: FACs Analysis

Search Result 198, Processing Time 0.032 seconds

Enhancement of phagocytosis and cytotoxicity in macrophages by tumor-derived IL-18 stimulation

  • Xu, Henan;Toyota, Naoka;Xing, Yanjiang;Fujita, Yuuki;Huang, Zhijun;Touma, Maki;Wu, Qiong;Sugimoto, Kenkichi
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.286-291
    • /
    • 2014
  • Inoculation of mice with the murine NFSA cell line caused the formation of large tumors with necrotic tumor cores. FACS analysis revealed accumulations of $CD11b^+$ cells in the tumors. Microarray analysis indicated that the NFSA cells expressed a high level of the pro-inflammatory factor interleukin-18 (il-18), which is known to play a critical role in macrophages. However, little is known about the physiological function of IL-18-stimulated macrophages. Here, we provide direct evidence that IL-18 enhances the phagocytosis of RAW264 cells and peritoneal macrophages, accompanied by the increased expression of tumor necrosis factor (tnf-${\alpha}$), interleukin-6 (il-6) and inducible nitric oxide synthase (Nos2). IL-18-stimulated RAW264 cells showed an enhanced cytotoxicity to endothelial F-2 cells via direct cell-to-cell interaction and the secretion of soluble mediators. Taken together, our results demonstrate that tumor-derived IL-18 plays an important role in the phagocytosis of macrophages and that IL-18-stimulated macrophages may damage tumor endothelial cells.

Silibinin Induces Apoptotic Cell Death Via ROS-dependent Mitochondrial Pathway in Human Glioma Cells

  • Shin, Won-Yong;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.888-894
    • /
    • 2009
  • It has been reported that silibinin, a natural polyphenolic flavonoid, induces cell death in various cancer cell types. However, the underlying mechanisms by which silibinin induces apoptosis in human glioma cells are poorly understood. The present study was therefore undertaken to examine the effect of silibinin on glioma cell apoptosis and to determine its underlying mechanism in human glioma cells. Apoptosis was estimated by FACS analysis. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (${\Psi}m$) were measured using fluorescence dyes DCFH-DA and $DiOC_6$(3), respectively. Cytochrome c release from mitochondria and caspase-3 activation were estimated by Western blot analysis using specific antibodies. Exposure of cells to 30 mM silibinin induced apoptosis starting at 6 h, with increasing effects after 12-48h in a time-dependent manner. Silibinin caused ROS generation and disruption of ym, which were associated with the silibinin-induced apoptosis. The silibinin-induced ROS generation and disruption in ym were prevented by inhibitors of mitochondrial electron transport chain. The hydrogen peroxide scavenger catalase blocked ROS generation and apoptosis induced by silibinin. Silibinin induced cytochrome c release into cytosolic fraction and its effect was prevented by catalase and cyclosporine A. Silibinin treatment caused caspase-3 activation, which was inhibited by DVED-CHO and cyclosporine A. Pretreatment of caspase inhibitors also protected against the silibinin-induced apoptosis. These findings indicate that ROS generation plays a critical role in the initiation of the silibinin-induced apoptotic cascade by mediation of the mitochondrial apoptotic pathway including the disruption of ${\Psi}m$, cytochrome c release, and caspase-3 activation.

Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

  • Nam, Ki-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • PURPOSE. This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS. Polymerized PMMA denture acrylic disc ($20mm{\times}2mm$) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and $100{\mu}L$ of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at $37^{\circ}C$ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS. PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION. This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required.

Immunological Features of Macrophages Induced by Various Morphological Structures of Candida albicans

  • Han, Kyoung-Hee;Park, Su Jung;Choi, Sun Ju;Park, Joo Young;Lee, Kyoung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.1031-1040
    • /
    • 2013
  • Candida albicans is a dimorphic fungus that commensally colonizes human mucosal surfaces. The aim of this study was to assess the role of different C. albicans morphologies in inducing pattern recognition receptors (PRRs) and cytokines in macrophages. Macrophages may respond to pathogen-associated molecular patterns via TLR2 and TLR4 by expressing cytokines. The hyphal transition of C. albicans was induced by 20% serum (S), RPMI-1640 (R), or $39^{\circ}C$ culture (H). Macrophages were then challenged with either yeast (Y) or different hyphae cultures of C. albicans, followed by RT-PCR and FACS analysis of PRRs expression. In addition, macrophages were stimulated with either yeast or different hyphae cultures of C. albicans used by RT-PCR and Bio-Plex analysis of cytokines production. Macrophages expressed high levels of TLR4 and dectin-1 after stimulation with Y cells. In contrast, stimulation with H or R cells strongly increased the expression of TLR2 and dectin-2. Stimulation with Y cells significantly enhanced the expression of IL-$1{\beta}$ and weakly increased the expression of IL-6 and IL-12. Stimulation with hyphal cells (S, R, and H) strongly increased IL-10 expression, but weakly reduced IL-$1{\beta}$ expression. The phagocytosis activity and NO production of macrophages were decreased upon treatment with hyphal cells compared with yeast, and depended on the length of hyphae. In summary, the yeast and hyphae forms of C. albicans resulted in an induction of different PRRs, with accompanying differences in immune cell cytokine profiles.

Potentiation of Innate Immunity by β-Glucans

  • Seong, Su-Kyoung;Kim, Ha-Won
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.144-148
    • /
    • 2010
  • $\beta$-Glucans have been known to exhibit antitumor activities by potentiating host immunity by an unknown mechanism. The C-type lectin dectin-1, a $\beta$-glucan receptor, is found on the macrophage and can recognize various $\beta$-glucans. Previously, we demonstrated the presence of $\beta$-glucan receptor, dectin-1, on the Raw 264.7 cells as well as on murine mucosal organs, such as the thymus, the lung, and the spleen. In order to investigate immunopotentiation of innate immunity by $\beta$-glucan, we stimulated a murine macrophage Raw 264.7 cell line with $\beta$-glucans from Pleurotus ostreatus, Saccharomyces cerevisiae, and Laminaria digitata. Then, we analyzed cytokines such as tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6 by reverse transcription-polymerase chain reaction (RT-PCR). In addition we analyzed gene expression patterns in $\beta$-glucan-treated Raw 264.7 cells by applying total mRNA to cDNA microarray to investigate the expression of 7,000 known genes. When stimulated with $\beta$-glucans, the macrophage cells increased TNF-$\alpha$ expression. When co-stimulation of the cells with $\beta$-glucan and lipopolysaccharide (LPS), a synergy effect was observed by increased TNF-$\alpha$ expression. In IL-6 expression, any of the $\beta$-glucans tested could not induce IL-6 expression by itself. However, when co-stimulation occurred with $\beta$-glucan and LPS, the cells showed strong synergistic effects by increased IL-6 expression. Chip analysis showed that $\beta$-glucan of P. ostreatus increased gene expressions of immunomodulating gene families such as kinases, lectin associated genes and TNF-related genes in the macrophage cell line. Induction of TNF receptor expression by FACS analysis was synergized only when co-stimulated with $\beta$-glucan and LPS, not with $\beta$-glucan alone. From these data, $\beta$-glucan increased expressions of immunomodulating genes and showed synergistic effect with LPS.

Anti-Growth Effect of Kaempferol, a Major Component of Polygonati Rhizoma, in Hepatocarcinoma Cells (간암 세포주에서 황정(黃精)의 주요 성분인 Kaempferol의 성장 억제 효과)

  • Joo, Ye-Jin;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.519-526
    • /
    • 2012
  • Recently, herbal flavonoids have been implicated for anti-cancer therapy. Flavonoids as a commonly known for their anti-oxidant activity, are contained in the herbal medicine as well as root of plants, vegetables, fruits, grains, tea, and wine. Kaempferol, a component of Polygonati rhizoma, a member of the herbal flavonoids, has been studied for anti-hypercholesterol, anti-hypertension and anti-diabetes. It is also known to be effective in anti-cancer therapy for breast, prostate and other type of cancers. However, the anti-cancer therapeutic mechanisms are pooly understood. Here, we investigated the molecular mechanism underlying kaempferol-induced anti-cancer effects using the human liver cancer cell lines, Hep3B, HepG2, and Sk-Hep-1, and human Chang liver cell as a control. As shown by the FACS analysis, measurement of caspase activity, DAPI and trypan blue staining, and DNA fragmentation assay, kaempferol induced apoptosis in the liver cancer cells with the greater potential in Hep3B cells than other liver cancer cells. In addition, we performed microarray analysis to profile the genome-wide mRNA expression regulated by kaempferol. Many of the apoptosis-related genes were significantly induced in kaempferol-treated Hep3B cells, in particular, the genes associated with MAPK cascade. Additionally, kaempferol induced the mRNA expression of genes involved in MKK7-JNK cascade, MKK3-p38 cascade, and caspase signaling pathway, which are all known to trigger apoptosis. Overall, our data suggest that kaempferol has anti-liver cancer effects by inducing apoptosis through the MKK7-JNK cascade, MKK3-p38 cascade, and caspase signaling pathways.

Cordycepin Suppresses Expression of Diabetes Regulating Genes by Inhibition of Lipopolysaccharide-induced Inflammation in Macrophages

  • Shin, Seul-Mee;Lee, Sung-Won;Kwon, Jeong-Hak;Moon, Sun-Hee;Lee, Seung-Jeong;Lee, Chong-Kil;Cho, Kyung-Hae;Ha, Nam-Joo;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.9 no.3
    • /
    • pp.98-105
    • /
    • 2009
  • Background: It has been recently noticed that type 2 diabetes (T2D), one of the most common metabolic diseases, causes a chronic low-grade inflammation and activation of the innate immune system that are closely involved in the pathogenesis of T2D. Cordyceps militaris, a traditional medicinal mushroom, produces a component compound, cordycepin (3'-deoxyadenosine). Cordycepin has been known to have many pharmacological activities including immunological stimulating, anti-cancer, and anti-infection activities. The molecular mechanisms of cordycepin in T2D are not clear. In the present study, we tested the role of cordycepin on the anti-diabetic effect and anti-inflammatory cascades in LPS-stimulated RAW 264.7 cells. Methods: We confirmed the levels of diabetes regulating genes mRNA and protein of cytokines through RT-PCR and western blot analysis and followed by FACS analysis for the surface molecules. Results: Cordycepin inhibited the production of NO and pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ in LPS-activated macrophages via suppressing protein expression of pro-inflammatory mediators. T2D regulating genes such as $11{\beta}$-HSD1 and PPAR${\gamma}$ were decreased as well as expression of co-stimulatory molecules such as ICAM-1 and B7-1/-2 were also decreased with the increment of its concentration. In accordance with suppressed pro-inflammatory cytokine production lead to inhibition of diabetic regulating genes in activated macrophages. Cordycepin suppressed NF-${\kappa}B$ activation in LPS-activated macrophages. Conclusion: Based on these observations, cordycepin suppressed T2D regulating genes through the inactivation of NF-${\kappa}B$ dependent inflammatory responses and suggesting that cordycepin will provide potential use as an immunomodulatory agent for treating immunological diseases.

Facilitation of SUMO (Small Ubiquitin-like Modifier) Modification at Tau 340-Lys Residue (a Microtubule-associated Protein) through Phosphorylation at 214-Ser Residue

  • Lee, Eun-Jeoung;Hyun, Sung-Hee;Chun, Jae-Sun;Ahn, Hye-Rim;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.11 no.1
    • /
    • pp.39-50
    • /
    • 2007
  • Tau plays a role in numerous neuronal processes, such as vesicle transport, microtubule-plasma membrane interaction and intracellular localization of proteins. SUMO (Small Ubiquitin-like Modifier) modification (SUMOylation) appears to regulate diverse cellular processes including nuclear transport, signal transduction, apoptosis, autophagy, cell cycle control, ubiquitin-dependent degradation, as well as gene transcription. We noticed that putative SUMOylation site is localized at $^{340}K$ of $Tau(^{339}VKSE^{342})$ with the consensus sequence information (${\Phi}KxE$ ; where ${\Phi}$ represents L, I, V or F and x is any amino acid). In this report, we demonstrated that $^{340}K$ of Tau is the SUMOylation site and that a point mutant of Tau S214E (an analog of the phospho $^{214}S$ Tau) promotes its SUMOylation at $^{340}K$ and its nuclear or nuclear vicinity localization, by co-immunoprecipitation and confocal microscopy analysis. Further, we demonstrate that the Tau S214E (neither Tau S214A nor Tau K340R) mutant increases its protein stability. However, the SUMOylation at $^{340}K$ of Tau did not influence cell survival, as determined by FACS analysis. Therefore, our results suggested that the phosphorylation of Tau on $^{214}S$ residue promotes its SUMOylation on $^{340}K$ residue and nuclear vicinity localization, and increases its stability, without influencing cell survival.

Apoptosis induced by water extracts of Nypa fruticans wurmb via a mitochondria-dependent pathway in human FaDu hypopharyngeal squamous carcinoma cells

  • Lee, Seul Ah;Choi, Mi Suk;Park, Bo-Ram;Kim, Jin-Soo;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.160-167
    • /
    • 2021
  • Nypa fruticans Wurmb (NFW) contains a large amount of phenolic acid and flavonoids, and is popular as a superfood in Myanmar. NFW has various biological activities, such as anti-inflammatory, anti-oxidant, and neuroprotective properties; however, the anti-cancer effect of NFW have not been reported. In this study, we investigated the anticancer activity of water extracts of NFW (WeNFW) and the underlying mechanism in human FaDu hypopharyngeal squamous carcinoma cells. The WeNFW inhibited FaDu cell growth in a dose-dependent manner without affecting normal cells (L929), as determined by an MTT assay and Live and Dead assay. In addition, the concentrations of WeNFW without cytotoxicity (0.025, 0.05, and 0.1 mg/mL) inhibited wound healing and colony formation. Furthermore, WeNFW significantly induced apoptosis through the proteolytic cleavage of caspase-3 and -9, poly (ADP-ribose) polymerase, and downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by DAPI staining, FACS analysis, and western blot analysis. Taken together, these results suggest that WeNFW exhibits potent anti-cancer effects by suppressing the growth of oral cancer cells, wound healing and colony formation activity. Via mitrochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, WeNFW can provide a natural chemotherapeutic drug for oral cancer in humans.

Inhibitory Effects of Trichosanthis Radix in the Activity and Proliferation of Th2 T Cells and Eosinophils in vitro : Implications on its Regulatory Roles for Asthma (과루근(瓜蔞根)이 Th2 T 세포와 호산구에 대한 활성 및 증식 억제에 미치는 영향)

  • Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.24 no.3
    • /
    • pp.29-37
    • /
    • 2009
  • Objectives : The present study was carried out to investigate the effect of Trichosanthis Radix extract (TRE) on the proliferation and activation of eosinophils which were prepared from lung cells of asthma-induced mice by ovalbumin (OVA) treatment. Methods : C57BL/6 mouse was exposed to OVA three times a week for 6 weeks. The mouse lung tissues were dissected out, chopped and dossiciated with collagenase (1 $\mu$g/ml). Eosinophils were activated by rmIL-3/rmIL-5 co-treatments. The lung cells were treated with TRE, incubated for 48 hr at 37$^{\circ}C$, and analyzed by flow cytometer, ELISA and RT-PCR methods Results : To measure cytotoxicity, mouse lung fibroblast cells (mLFCs) were pretreated with various concentrations of TRE. TRE at 100 $\mu$g/ml, the highest concentration, examined did not have any cytotoxic effects on mLFCs. In FACS analysis, number of granulocyte/lymphocyte, CD3e-/CCR3+, CD3e+/CD69+, CD4+/CD8+ T cells in asthma-induced lung cells were significantly decreased by TRE treatment compared to the control group. But CD4+/CD25+ T cells were not examined significant change in lung cells treated with TRE. In ELISA analysis, production levels of IL-3, IL-5, IL-13 and histamine in asthma-induced lung cells, which were induced by rIL-3 plus rmIL-5 co-treatment, were significantly decreased by TRE treatment. Conclusions : The present data suggested that Trichosanthis Radix on the inhibition of parameters associated with asthma responses in eosinpophils, and thus implicate the possibility for the clinical application of Trichosanthis Radix.