• Title/Summary/Keyword: F0 Range

Search Result 1,445, Processing Time 0.026 seconds

Study of atmosphere parameters of the IVV-2M reactor hall

  • M.E. Vasyanovich;M.V. Zhukovsky;E.I. Nazarov;I.M. Russkikh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3935-3939
    • /
    • 2023
  • The paper presents the results of a study of radioactive noble gases and from decay products in the atmosphere of the reactor hall of the research nuclear reactor IVV-2M. The distribution of short-lived 88Rb and 138Cs activity by sizes of aerosol particles was measured in the range of 0.5-1000 nm. It is shown that radioactive aerosols are characterized by three main modes with AMTD 2-3 nm, 7-15 nm and 400 nm. About 70% of aerosol activity is due to 88Rb. The equilibrium factor between 88Kr and 88Rb is 0.2 ± 0.1. The total concentration of aerosols particles was measured using an aerosol diffusion spectrometer. The value of unattached fraction of radioactive aerosols in the atmosphere of reactor hall IVV2M was f = 0.15-0.25 at the average total aerosol particles concentration from 20,000 cm3 to 53,000 cm3.

Microwave Absorber Prepared by Using the Wasted Mn-Zn Ferrite and the Cement (Mn-Zn ferrite 廢棄物과 시멘트를 이용한 電波吸收體)

  • 조완식;김종오
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.31-35
    • /
    • 2000
  • The complex permeability, the complex permittivity and the reflection loss are investigated in the composite microwave absorbers which are mixed with the wasted Mn-Zn ferrite and the industrial cement. The cement has larger the complex permittivity than that of the rubber. The complex permittivity is decreasing with the increment of the mixing ratio of Mn-Zn ferrite to cement (F/C in weight) and the complex permeability is increasing with the increment of F/C. The maximum reflection loss is above -40 dB at all samples. The matching frequency is in the range of 1.3 GHz to 2.9 GHz and is decreasing with the increment of F/C from 1 to 3. The matching thickness is increasing with the increment of F/C. The wasted Mn-Zn ferrite and the cement is very useful material for the composite microwave absorber.

  • PDF

The structural and Microwave Dielectric Properties of (1-x)Ba($Mg_{1/3}Ta_{2/3})O_3$-xBa($Co_{1/3}Nb_{2/3})O_3$(x=0.25~0.5) Ceramics ((1-x)Ba($Mg_{1/3}Ta_{2/3})O_3$-xBa($Co_{1/3}Nb_{2/3})O_3$(x=0.25~0.5) 세라믹스의 구조 및 마이크로파 유전특성)

  • 황태광;최의선;임인호;이영희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.197-201
    • /
    • 2001
  • The microwave dielectric properties of (1-x)Ba(Mg$_{1}$3/Ta$_{2}$3/)O$_3$-xBa(Co$_{1}$3/Nb$_{2}$3)O$_3$(x=0.25~0.5) ceramics depending on the Ba(Co$_{1}$3/Nb$_{2}$3/)O$_3$[BCN] contents and the possibility of application as a microwave dielectric resonator were investigated. The specimens were prepared by he conventional mixed oxide method using there sintering temperature of 1575$^{\circ}C$. It was found that Ba(Mg$_{1}$3/Ta$_{2}$3/)O$_3$[BMT] and BCN formed a solid solution with complex perovskite structure. As the mole fraction of BCN increased, dielectric constant increased while temperature coefficient of resonant frequency decreased. The highest value of quality factor, Qxf$_{0}$=138,205GHz, obtained in the sample of 0.9BMT-0.1BCN ceramics. In the range of x$\geq$0.4, the dielectric constant was about 30. The 0.55BMT-0.45BCN ceramics showed excellent microwave dielectric properties with $\varepsilon$$_{r}$=30.84, Qxf$_{0}$=75,325GHz and $\tau$$_{f}$=2.9015ppm/$^{\circ}C$.EX>.EX>.

  • PDF

Comparative Analysis of the Q Value between the Crust of the Seoul Metropolitan Area and the Eastern Kyeongsang Basin (수도권과 경상 분지 동부 지역 지각의 Q 값 비교 분석)

  • Park, Yoon-Jung;Kyung, Jai-Bok;Do, Ji-Young
    • Journal of the Korean earth science society
    • /
    • v.28 no.6
    • /
    • pp.720-732
    • /
    • 2007
  • For the Seoul metropolitan area and the eastern Kyeongsang Basin, we simultaneously calculated $Q_P^{-1}$ and $Q_S^{-1}$ by applying the extended coda-normalization method for 98 seismograms of local Earthquakes. As frequency increases from 1.5 Hz to 24 Hz, the result decreased from $(4.0{\pm}9.2){\times}10^{-3}$ to $(4.1{\pm}4.2){\times}10^{-4}$ for $Q_P^{-1}$ and $(5.5{\pm}5.6){\times}10^{-3}$ to $(3.4{\pm}1.3){\times}10^{-4}$ for $Q_S^{-1}$ in Seoul Metropolitan Area. The result of eastern Kyeongsang basin also decreased from $(5.4{\pm}8.8){\times}10^{-3}$ to $(3.7{\pm}3.4){\times}10^{-4}$ for $Q_P^{-1}$ and $(5.7{\pm}4.2){\times}10^{-3}$ to $(3.5{\pm}1.6){\times}10^{-4}$ for $Q_S^{-1}$. If we fit a frequency-dependent power law to the data, the best fits of $Q_P^{-1}$ and $Q_S^{-1}$ are $0.005f^{-0.89}$ and $0.004f^{-0.88}$ in Seoul metropolitan Area, respectively. The value of $Q_P^{-1}$ and $Q_S^{-1}$ in the eastern Kyeongsang basin are $0.007f^{-1.02}$ and $0.006f^{-0.99}$, respectively. The $Q_S^{-1}$ value of the eastern Kyeongsang basin is almost similar to Seoul metropolitan area. But the $Q_P^{-1}$ value of the eastern Kyeongsang basin is a little higher than that of Seoul metropolitan area. This may be that the crustal characteristics of the eastern Kyeongsang basin is seismologically more heterogeneous. However, these $Q_P^{-1}$ values in Korea belong to the range of seismically stable regions all over the world.

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

A Study on Dissolve and Remove Analysis of Organic Chemicals Using a Mixed Method of Advanced Oxidation and Micro Filtering - Water Drinking Point - (고도산화와 정밀여과의 혼성공법을 이용한 유기화학물질의 분해 및 제거분석에 관한 연구 - 먹는 물을 중심으로 -)

  • An, Tai-Young;Jun, Sang-Ho;Ahn, Tae-Seok;Han, Mi-Ae;Hur, Jang-Hyun;Pak, Mi-Young
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.99-111
    • /
    • 2007
  • It is impossible to remove toxic organic substances that are recognized as a cancer caused suspicious element in drinking water using the conventional water purification method. This study introduces groundwater into a reaction chamber as an effective amount of water to process this water using a mixed method of AOP oxidation and M/F membrane and purifies it as a desirable level by artificially mixing such toxic substances in order to effectively process the water. Based on this fact, this study configures an optimal operation condition. The VOCs existed in toxic substances was investigated as a term of phenol and toluene, and agricultural chemicals were also investigated as a term of parathion, diazinon and carbaryl. The experiment applied in this study was performed using a single and composite soolution. In the operation condition applied to fully dissolve and remove such substances, the amount of $H_2O_2$ injected in the process was 150 mL of a fixed quantity, the value of pH was configured as $5.5{\sim}6.0$, the temperature was controlled as a range of $12{\sim}16^{\circ}C$, the dissolved amount of ozone was applied more than 5.0 mg/L, the reaction time was determined as an optimal condition, such as $30{\sim}40$ minutes, and the segregation membrane in the same reactor was determined for acquire water drinking of large quantity using a pore size of $0.45{\mu}m$ M/F membrane.

The Prognostic Value of 18F-Fluorodeoxyglucose PET/CT in the Initial Assessment of Primary Tracheal Malignant Tumor: A Retrospective Study

  • Dan Shao;Qiang Gao;You Cheng;Dong-Yang Du;Si-Yun Wang;Shu-Xia Wang
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.425-434
    • /
    • 2021
  • Objective: To investigate the potential value of 18F-fluorodeoxyglucose (FDG) PET/CT in predicting the survival of patients with primary tracheal malignant tumors. Materials and Methods: An analysis of FDG PET/CT findings in 37 primary tracheal malignant tumor patients with a median follow-up period of 43.2 months (range, 10.8-143.2 months) was performed. Cox proportional hazards regression analyses were used to assess the associations between quantitative 18F-FDG PET/CT parameters, other clinic-pathological factors, and overall survival (OS). A risk prognosis model was established according to the independent prognostic factors identified on multivariate analysis. A survival curve determined by the Kaplan-Meier method was used to assess whether the prognosis prediction model could effectively stratify patients with different risks factors. Results: The median survival time of the 37 patients with tracheal tumors was 38.0 months, with a 95% confidence interval of 10.8 to 65.2 months. The 3-year, 5-year and 10-year survival rate were 54.1%, 43.2%, and 16.2%, respectively. The metabolic tumor volume (MTV), total lesion glycolysis (TLG), maximum standardized uptake value, age, pathological type, extension categories, and lymph node stage were included in multivariate analyses. Multivariate analysis showed MTV (p = 0.011), TLG (p = 0.020), pathological type (p = 0.037), and extension categories (p = 0.038) were independent prognostic factors for OS. Additionally, assessment of the survival curve using the Kaplan-Meier method showed that our prognosis prediction model can effectively stratify patients with different risks factors (p < 0.001). Conclusion: This study shows that 18F-FDG PET/CT can predict the survival of patients with primary tracheal malignant tumors. Patients with an MTV > 5.19, a TLG > 16.94 on PET/CT scans, squamous cell carcinoma, and non-E1 were more likely to have a reduced OS.

Prediction of Optimum Capacity for Tractor Drawn Liquid Manure Tank Spreader by Computer Simulation (컴퓨터 모의시험에 의한 트랙터견인형 액상가축분뇨 살포기의 적정용량 예측)

  • 이규승
    • Journal of Animal Environmental Science
    • /
    • v.8 no.3
    • /
    • pp.135-144
    • /
    • 2002
  • A computer simulation was carried out to investigate the optimum capacity of liquid manure tank spreader which is used as a tractor attachment. Soil physical properties, such as soil moisture content, bulk density, soil hardness and soil types were measured in the 10 major rice production area for computer simulation. Mathematical model which include soil physical properties and vehicle factor was used for computer simulation. Most of the soil type of the investigated area was sandy clay loam. Soil moisture content ranged between 30 and 40% mostly. Soil bulk density was in the range of 1,500 to 1,700 kg/$m^3$. Soil hardness ranged between 1 to 18 $cm^2$. Soil hardness incorporate the effects of many soil physical properties such as soil moisture content, soil type and soil bulk density, and so the range of soil hardness is greater than any other physical properties. The capacity of liquid manure tank spreader was above 3,000 kg$_{f}$ for the most of the investigated areas, and mostly in the range of 4,000 to 6,000 $kg_f$ depending upon the slip. But for the soft soil area such as Andong and Asan, the tractor itself has mobility problem and shows no pulling force for some places. For this area, the capacity of liquid manure tank spreader ranged between 1,000 and 2,000 $kg_f$ mostly, so the capacity of liquid manure tank spreader should be designed as a small capacity trailer compared to the other area.mpared to the other area.

  • PDF

Microsatellite Analysis of the Genetic Diversity and Population Structure in Dairy Goats in Thailand

  • Seilsuth, Somkiat;Seo, Joo Hee;Kong, Hong Sik;Jeon, Gwang Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.327-332
    • /
    • 2016
  • The genetic relationships between different populations and breeds of exotic dairy goats in Thailand were studied using 12 microsatellite markers. Blood samples were obtained from 211 goats from Department of Livestock Development breeding and research farms: 29 Anglonubian (AN), 21 Alpine (AP), 23 Jamunapari (JAM), 50 Saanen (SN), and 88 Toggenburg (TG). Five of the 12 microsatellite markers were found to be polymorphic. A mean of 7.40 alleles per locus was found, with a range from 5 (SPS115 and ETH225) to 11 (TGLA122). We found 24, 27, 19, 32, and 24 alleles in the AN, AP, JAM, SN, and TG breeds, respectively; 37 alleles were present in all breeds. The mean number of alleles in each population ranged from 3.2 (ETH225 locus) to 7.6 (TGLA122 locus). Genetic variability within the breeds was moderate as evidenced by the mean expected heterozygosity of 0.539. The average observed heterozygosity across the 5 markers in all breeds was 0.529 with the maximum observed at the BM1818 locus (0.772) and the minimum at the ETH225 locus (0.248). The observed and expected heterozygosity for all breeds for the 5 microsatellite markers ranged from 0.419 to 0.772 and 0.227 to 0.792, respectively. On the basis of their means, the TGLA122 and BM1818 loci were the most suitable markers for distinguishing genetic diversity among the goats. The estimated average $F_{is}$ value for the breeds ranged from -0.044 (ETH225) to 0.180 (SPS115), while the estimated average $F_{st}$ value ranged from 0.021 (SPS115) to 0.104 (ETH10). These results indicated that TGLA122 and BM1818 markers are suitable to be used for aiding conservation and breeding improvement strategies of dairy.

Photo-protective and Anti-melanogenic Effect from Phenolic Compound of Olive Leaf (Olea europaea L. var. Kalamata) Extracts on the Immortalized Human Keratinocytes and B16F1 Melanoma Cells

  • Ha, Ju-Yeon;Choi, Hyun-Kyung;Oh, Myoung-Jin;Choi, Hae-Yeon;Park, Chang-Seo;Shin, Han-Seung
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1193-1198
    • /
    • 2009
  • Ethylacetate and butanol fractions of leaf extracts (OLE) showed the higher contents of total phenolic compounds than hexane and water fractions. Oleuropein contents were $4.21{\pm}0.57,\;3.92{\pm}0.43,\;0.32{\pm}0.03,\;5.76{\pm}0.32$, and $32.47{\pm}0.25mg$/100g for ethanol extract, and hexane, chloroform, ethyl acetate, and butanol fraction, respectively. Treatment of ultraviolet-B (UVB) irradiated cells with 3 OLEs prepared by using ethylacetate and butanol at concentrations 0.001, 0.005, and 0.01% respectively showed significant recovery of cell viabilities. Treatment of dexametason 1 mM reduced tumor necrotic factor (TNF)-${\alpha}$ secretion by about 40%. UVB irradiated immortalized human keratinocytes (HaCaT) cells were treated with 3 different OLEs at the same concentrations. Ethylacetate fraction showed the strongest inhibition activity with respect of reduction of the elevated (TNF)-${\alpha}$. Cytotoxicity of OLEs on the B16-F1 cells was evaluated through thiazolyl blue tetrazolium bromide (MTT) assay. Ethylacetate fraction has no cytotoxicity in the range of 0.005-0.01%. A slight cytotoxicity was observed at the concentration of 0.1% butanol fraction of OLE that caused 10% decrease in cell viability.