Browse > Article
http://dx.doi.org/10.5713/ajas.15.0270

Microsatellite Analysis of the Genetic Diversity and Population Structure in Dairy Goats in Thailand  

Seilsuth, Somkiat (Faculty of Agriculture and Life Science, Chadrakasem Rajabhat University)
Seo, Joo Hee (Genetic Informatics Center, Hankyong National University)
Kong, Hong Sik (Genetic Informatics Center, Hankyong National University)
Jeon, Gwang Joo (Genetic Informatics Center, Hankyong National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.3, 2016 , pp. 327-332 More about this Journal
Abstract
The genetic relationships between different populations and breeds of exotic dairy goats in Thailand were studied using 12 microsatellite markers. Blood samples were obtained from 211 goats from Department of Livestock Development breeding and research farms: 29 Anglonubian (AN), 21 Alpine (AP), 23 Jamunapari (JAM), 50 Saanen (SN), and 88 Toggenburg (TG). Five of the 12 microsatellite markers were found to be polymorphic. A mean of 7.40 alleles per locus was found, with a range from 5 (SPS115 and ETH225) to 11 (TGLA122). We found 24, 27, 19, 32, and 24 alleles in the AN, AP, JAM, SN, and TG breeds, respectively; 37 alleles were present in all breeds. The mean number of alleles in each population ranged from 3.2 (ETH225 locus) to 7.6 (TGLA122 locus). Genetic variability within the breeds was moderate as evidenced by the mean expected heterozygosity of 0.539. The average observed heterozygosity across the 5 markers in all breeds was 0.529 with the maximum observed at the BM1818 locus (0.772) and the minimum at the ETH225 locus (0.248). The observed and expected heterozygosity for all breeds for the 5 microsatellite markers ranged from 0.419 to 0.772 and 0.227 to 0.792, respectively. On the basis of their means, the TGLA122 and BM1818 loci were the most suitable markers for distinguishing genetic diversity among the goats. The estimated average $F_{is}$ value for the breeds ranged from -0.044 (ETH225) to 0.180 (SPS115), while the estimated average $F_{st}$ value ranged from 0.021 (SPS115) to 0.104 (ETH10). These results indicated that TGLA122 and BM1818 markers are suitable to be used for aiding conservation and breeding improvement strategies of dairy.
Keywords
Microsatellite; Genetic Diversity; Dairy Goat;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Adriana, M. A., S. E. F. Guimaraes, C. S. Pereira, P. S. Lopes, M. T. Rodrigues, and T. M. M. Machado. 2010. Paternity in Brazilian goats with DNA microsatellites. R. Bras. Zootec. 39: 1011-1014.   DOI
2 Adriana, M. A., S. E. F. Guimaraes, T. M. M. Machado, P. S. Lopes, C. S. Pereira , F. L. R. Silva, M. T. Rodrigues, V. S. Columbiano, and C. G. Fonseca. 2006. Genetic diversity between herds of Alpine and Saanen dairy goats and the naturalized Brazilian Moxoto breed. Genet. Mol. Biol. 29:67-74.   DOI
3 Barker, J. S. F., S. G. Tan, S. S. Moore, T. K. Mukherjee, J. L. Matheson, and O. S. Selvaraj. 2001. Genetic variation within and relationship among populations of Asian goats (Capra hircus). J. Anim. Breed. Genet. 118:213-233.   DOI
4 Berthouly, C., B. Bed'Hom, M. Tixier-Boichard, C. F. Chen, Y. P. Lee, D. Laloe, H. Legros, E. Verrier, and X. Rognon, 2008. Using molecular markers and multivariate methods to study the genetic diversity of local European and Asian chicken breeds. Anim. Genet. 39:121-129.   DOI
5 Botstein, D., R. L. White, M. Skolnik, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
6 Bruford, M. W., D. J. Cheesman, T. Coote, H. A. Green, S. A. Haines, C. O'Ryan, and T. R. Williams. 1996. Microsatellites and their application to conservation genetics. In: Molecular Genetic Approaches in Conservation (Eds. T. B. Smith and R. K. Wayne). Oxford University Press, New York. USA. pp. 278-297.
7 Di, R., S. M. Farhad Vahidi, Y. H. Ma, X. H. He, Q. J. Zhao, J. L. Han, W. J. Guan, M. X. Chu, W. Sun, and Y. P. Pu. 2011. Microsatellite analysis revealed genetic diversity and population structure among Chinese cashmere goats. Anim. Genet. 42:428-431.   DOI
8 Dixit, S. P., N. K. Verma, R. A. K. Aggarwal, M. K. Vyas, J. Rana, and A. Sharma. 2012. Genetic diversity and relationship among Indian goat breeds based on microsatellite markers. Small Rumin. Res. 105:38-45.   DOI
9 Dixit, S. P., N. K. Verma, R. A. K. Aggarwal, M. K. Vyas, J. Rana, A. Sharma, P. Tyagi, P. Arya, and B. R. Ulmek. 2010. Genetic diversity and relationship among southern Indian goat breeds base on microsatellite markers. Small Rumin. Res. 91:153-159.   DOI
10 FAO. 2004. Guidelines for development of national management of farm animal genetic resources plans. Measurement of Domestic Animal Genetic Diversity (MoDAD): Recommended microsatellite markers. Rome, Italy.
11 Glaubitz, J. C. and G. F. Moran. 2000. Genetic tools: The use of biochemical and molecular markers. In: Forest Conservation Genetics: Principles and Practice (Eds. A. G. Young, D. Boshier, and T. J. Boyle). CABI Publishing, Collingwood, Australia. pp. 39-59.
12 Kim, K. S., J. S. Yeo, J. W. Lee, W. Kim, and C. B. Choi. 2002. Genetic diversity of goat from Korea and China using microsatellite analysis. Asian Australas. J. Anim. Sci. 15:461-465.   DOI
13 Gour, D. S., G. Malik, S. P. S, Ahlawat, A. K. Pandey, R. Sharma, N. Gupta, S. C. Gupta, P. S. Bisen, and D. Kumar. 2006. Analysis of genetic structure of Jamunapari goats by microsatellite markers. Small Rumin. Res. 66:140-149.   DOI
14 Haenlein, G. F. W. 2004. Goat milk in human nutrition. Small Rumin. Res. 51:155-163.   DOI
15 Khan, B. B. 2008. Health and Husbandry of Dairy Animals. TM Printers, Faisalabad, Pakistan.
16 Li, J. Y., H. Chen, X. Y. Lan, X. J. Kong, and L. J. Min. 2008. Genetic diversity of five Chinese goat breeds assessed by microsatellite markers. Czech J. Anim. Sci. 53:315-319.   DOI
17 Marshall, T. C., J. Slate, L. E. Kruuk, and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7:639-655.   DOI
18 Nagura, Y. 2004. Utilization of goat milk and meat in Japan. Farming, Japan. 36.
19 Nomura, K., K. Ishii, H. Dadi, Y. Takahashi, M. Minezawa, C. Y. Cho, Sutopo, M. O. Faruque, D. Nyamsamba, and T. Amano. 2012. Microsatellite DNA markers indicate three genetic lineages in East Asian indigenous goat populations. Anim. Genet. 43:760-767.   DOI
20 Ota, T. 1993. DISPAN: Genetic Distance and Phylogenetic Analysis. Pennsylvania State University Park, State College, PA, USA.
21 Park, S. D. E. 2001. The Excel microsatellite toolkit (version 3.1). Animal Genomics Laboratory, University College Dublin, Ireland.
22 Takahashi, H., D. Nyamsamba, B. Mandakh, Y. O. Zagdsuren, T. Amano, K. Nomura, M. Yokohama, S. Ito, and M. Minezawa. 2008. Genetic structure of Mongolian goat populations using microsatellite loci analysis. Asian Australas. J. Anim. Sci. 21:947-953.   DOI
23 Ramamoorthi, J., K. Thilagam, S. N. Sivaselvam, and S. M. Karthickeyan. 2009. Genetic characterization of Barbari goats using microsatellite markers. J. Vet. Sci. 10:73-76.   DOI
24 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
25 Seo, D. W., M. R. Hoque, N. R. Choi, H. Sultana, H. B. Park, K. N. Heo, B. S. Kang, H. T. Lim, S. H. Lee, C. Jo, and J. H. Lee. 2013. Discrimination of Korean native chicken lines using fifteen selected microsatellite markers. Asian Australas. J. Anim. Sci. 26:316-322.   DOI
26 Wang, Y., J. Wang, X. D. Zi, C. R. Huatai, X. Ouyang, and L. S. Liu. 2011. Genetic diversity of Tibetan goats of plateau type using microsatellite markers. Arch. Tierz. 54:188-197.
27 Wright, S. 1965. The interpretation of population structure by Fstatistics with special regard to systems of mating. Evolution 19:395-420.   DOI