• Title/Summary/Keyword: F. E, M Analysis

Search Result 568, Processing Time 0.024 seconds

Validation of Simultaneous Analysis Method of Standard Compounds in Fermented Kalopanax pictus Nakai by Bioconversion (생물전환을 통한 음나무발효물의 지표성분 설정 및 동시분석법 검증)

  • Jang, Won Hui;Lee, Wha Young;Lee, Bong Jin;Kim, Jean Man;Park, Seon Ju
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.2
    • /
    • pp.148-154
    • /
    • 2019
  • The aim of this study was to select compounds for the standardization of fermented Kalopanax pictus Nakai (KP-F), to develop the analysis method using HPLC-PDA and to perform method validation. KP-F is a fermented powder developed to improve the original physiological activities and create a new functionality. Eleutheroside E, Acanthoside B, and Syringaresinol were selected as the standard compounds and developed our own method for simultaneous analysis. The analyte was isolated using C18 column with a gradient elution of 0.05 M phosphoric acid in water and methanol as the mobile phase at a flow rate of 1 mL/min and detected at 210 nm. As a result, all standard compounds showed good linearity with an $R^2$ (coefficient of correlation) of 1.000 and for the limit of detection range of $0.710{\sim}0.831{\mu}g/mL$, and the limit of quantification as $2.150{\sim}2.520{\mu}g/mL$. The precision was RSD (%) of less than 4.80%, while the accuracy was 4.70%>RSD (%) for the range 102.44~110.48%. In conclusion, the developed analysis method is suitable for the detection of Eleutheroside E, Acanthoside B, and Syringaresinol in KP-F.

The Characteristics Analysis of Single Phase LSPM Synchronous Motor by changing Design Parameter (단상 LSPM 동기 전동기의 설계 변수 변화에 따른 특성 해석)

  • Hong, Sook-Hyun;Ko, Kwon-Min;Park, Chan-Bae;Choi, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.86-88
    • /
    • 2003
  • The efficiency of electric machine is important due to increase of interest about energy saving. Single Phase Line Start Permanent Magnet Synchronous Motor has high efficiency and power factor. LSPMSM offer a high efficiency as compared induction motor which are used in the home appliance. The analysis and design of LSPMSM is difficult because of unbalanced rotating magnetic field, nonlinear characteristics and rotor saliency. To consider these effects, F.E.M(Finite Element Methods) is coupled equivalent circuit methods. In this paper, a methods of analysis and design using F.E.M and equivalent circuit is represented.

  • PDF

The Characteristic Analysis of a Single-Sided Linear Induction Motor due to the Lateral Displacement of the Primary and the Secondary by the F.E.M. (유한 요소법에 의한 편측식 선형유도전동기의 1차측과 2차측의 횡방향 편위에 따른 특성해석)

  • 임달호;최창규;조철직;조윤현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.820-827
    • /
    • 1990
  • For the purpose of investigation the thrust force, the lateral force, and the eddy current loss when the primary and the secondary of a single-sided linear induction motor is displaced in the space, this paper proposes an analysis technique for the characteristics of the eddy current induced on the secondary and the magnetic flux density distribution in the y-z plane by F.E.M. To verify the effectiveness of this analysis technique, the starting-thrust force due to a lateral displacement is compared to the experimental data.

  • PDF

Identification of joint dynamics of mechanical structures using condensed F.E.M. model and experimental modal analysis (축약된 유한요소 모델과 실험적 모우드 해석을 이용한 기계구조물의 연결부 동특성 규명)

  • 최병욱;박병호;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.426-439
    • /
    • 1988
  • Dynamic properties such as stiffness and damping of mechanical joints are essential for the accurate prediction of the dynamic behaviors of the system and subsequent improvement of the design. So far several techniques, analytical, experimental, or both have been developed. A technique using condensed F.E.M. model and Experimental Modal Analysis is presented to identify the joint structural parameters. First, modal parameters of structure are measured by certain complex frequency obtained from experiment to match with the order of the Experimental Modal Analysis model. Finally by equating the modal parameters obtained from experiment with those of the condensed system, the unknown joint structural parameters can be identified. A simulation study is conducted to investigate the accuracy of technique. The experiments are performed with ball bearings in a rotor bearing system.

Electromagnetic Analysis of 6.6kV Main Transformer for a Vessel (6.6kV급 선박용 고압 건식 변압기 최적 설계를 위한 전자계 해석)

  • Kang Moon Shick;Kim Kyung Ho;Ku Sung Whi;Cho Yun Hyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.818-820
    • /
    • 2004
  • This paper is described the insulation design and 3-D electromagnetic analysis of 6.6kV main transformer for a vessel by F.E.M.. To obtain the optimal design of insulation structure, the electric field stress is analyzed and estimated the proposed model A and B for the characteristics investigation according to the insulation thickness and position. And the performance characteristics of 6.6kV transformer are estimated as the equivalent circuit parameters computed by F.E.M. analysis.

  • PDF

Expression of Cell Cycle Related Genes in HL60 Cells Undergoing Apoptosis by X-irradiation (HL60 세포주에서 방사선 조사에 의한 Apoptosis와 세포 주기 관련 유전자의 발현 변화)

  • Kim, Jin-Hee;Park, In-Kyu
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.377-388
    • /
    • 1998
  • Purpose : To evaluate changes in expression of cell cycle related genes during apoptosis induced in HL60 cells by X-irradiation to understand molecular biologic aspects in mechanism of radiation therapy. Material and Methods : HL-60 cell line (promyelocytic leukemia cell line) was grown in culture media and irradiated with 8 Gr by linear accelerator (6 MV X-ray). At various times after irradiation, ranging from 3 to 48 hours were analyzed apoptotic DNA fragmentation assay for apoptosis and by western blot analysis and semi-quantitative RT-PCR for expression of cell cycle related genes (cyclin A, cyclin B, cyclin C, cyclin Dl, cyclin E, cdc2, CDK2, CDK4, $p16^{INK4a}$, $p21^{WAF1}$, $p27^{KIP1}$, E2F, PCNA and Rb). Results : X-irradiation (8 Gy) induced apoptosis in HL-60 cell line. Cycline A protein increased after reaching its peak 48 h after radiation delivery and cyclin E, E2F, CDK2 and RB protein increased then decreased after radiation. Radiation induced up-regulation of the expression of E2F is due to mostly increase of Phosphorylated retinoblastoma proteins (ppRb). Cyclin Dl, PCNA, CDC2, CDK4 and $p16^{INK4a}$ protein underwent no significant change at any times after irradiation. There was not detected $p21^{WAF1}$ and $p27^{KIP1}$ protein. Cyclin A, B, C mRNA decreased immediately after radiation and then increased at 12 h after radiation. Cyclin Dl mRNA increased immediately and then decreased at 48 h after radiation. After radiation, cyclin E mRNA decreased with the lapse of time. CDK2 mRNA decreased at 3h and increased at eh after radiation. CDK4 mRNA rapidly increased at 6 to 12 h after radiation. There was no change of expression of $p16^{INK4a}$ and not detected in expressin of $p21^{WAF1}$ and $p27^{KIP1}$ mRNA. Conclusion : We suggest that entry into S phase may contribute to apoptosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of pRb protein are related with radiation induced auoptosis of HL60 cells and tosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of PRb protein are related with radiation induced apoptosis of HL60 cells and this may be associated with induction of E2F and cyclinE/CDK2. These results support that $p21^{WAF1}$ and $p27^{KIP1}$ are not related with radiation induced-apoptosis.

  • PDF

Proposal of the Penalty Factor Equations Considering Weld Strength Over-Match

  • Kim, Jong-Sung;Jeong, Jae-Wook;Lee, Kang-Yong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.838-849
    • /
    • 2017
  • This paper proposes penalty factor equations that take into consideration the weld strength over-match given in the classified form similar to the revised equations presented in the Code Case N-779 via cyclic elastic-plastic finite element analysis. It was found that the $K_e$ analysis data reflecting elastic follow-up can be consolidated by normalizing the primary-plus-secondary stress intensity ranges excluding the nonlinear thermal stress intensity component, $S_n$ to over-match degree of yield strength, $M_F$. For the effect of over-match on $K_n{\times}K_{\nu}$, dispersion of the $K_n{\times}K_{\nu}$ analysis data can be sharply reduced by dividing total stress intensity range, excluding local thermal stresses, $S_{p-lt}$ by $M_F$. Finally, the proposed equations were applied to the weld between the safe end and the piping of a pressurizer surge nozzle in pressurized water reactors in order to calculate a cumulative usage factor. The cumulative usage factor was then compared with those derived by the previous $K_e$ factor equations. The result shows that application of the proposed equations can significantly reduce conservatism of fatigue assessment using the previous $K_e$ factor equations.

13C-NMR Spectroscopy of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde/Urea Mole Ratios

  • Park, Byung-Dae;Lee, Sang M.;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.63-72
    • /
    • 2008
  • As a part of abating formaldehyde emission of urea-formaldehyde (UF) resin adhesive, this study was conducted to investigate chemical structures of UF resin adhesives with different formaldehyde/urea (F/U) mole ratios, using carbon-13 nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. UF resin adhesives were synthesized at four different F/U mole ratios such as 1.6, 1.4, 1.2, and 1.0 for the analysis. The analysis $^{13}C$-NMR spectroscopy showed that UF resin adhesives with higher F/U mole ratios (i.e., 1.6 and 1.4) had two distinctive peaks, indicating the presence of dimethylene ether linkages and methylene glycols, a dissolved form of free formaldehyde. But, these peaks were not detected at the UF resins with lower F/U mole ratios (i.e., 1.2 and 1.0). These chemical structures present at the UF resins with higher F/U mole ratios indicated that UF resin adhesive with higher F/U mole ratio had a greater contribution to the formaldehyde emission than that of lower F/U mole ratio. Uronic species were detected for all UF resins regardless of F/U mole ratios.

Direct determination of influence lines and surfaces by F.E.M.

  • Orakdogen, Engin;Girgin, Konuralp
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.279-292
    • /
    • 2005
  • In this study, element loading matrices are defined for static application of classical M$\ddot{u}$ller-Breslau principle to finite element method. The loading matrices are derived from existing element matrices using Betti's law and known governing equations of F.E.M. Thus, the ordinates of influence lines and influence surfaces may be easily obtained from structural analysis for the loading matrices derived from governing equations, instead of through introduced unit force or displacement techniques. An algorithm for a computer program and comparative numerical examples are also presented to illustrate the procedure for determination of influence line and surface ordinates.

Finite Element Analysis for Precision Roll Forming Process of Stainless Slide Rail (스테인러스 슬라이드 레일의 정밀 롤 포밍을 위한 유한요소해석)

  • Lee, Taek-Sung;Kim, Gun-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.96-103
    • /
    • 2009
  • The roll forming process is commonly used for the conventional 'Fe' metal products such as a furniture drawer guide or an up-down slide guide. Recently its applications are variously expanded to the sanitary facilities or electronic devices. It is essentially required the cleanness for the high technology application and any corrosion or rust are not allowed. Therefore, in those applications the stainless steel materials are strongly demanded as the substitution of 'Fe' steel. However the mechanical properties of stainless steel are not suitable for forming process compared with those of 'Fe' steel. Up to now, the conventional F.E.M.(Finite Element Method) has been used to analyze and design the roll forming process. The purpose of this research is to obtain the proper production process and the shape of rolls to manufacture the high precision slide rails made of stainless steel material. The commercial program, SHARPE-RF, is used to analyze the entire roll forming process. The results show that the rolling process and the roll design by F.E.M. are useful from the good agreement between the shapes of products estimated by F.E.M. and those of the actual products.